Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data
Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more ef...
Gespeichert in:
Veröffentlicht in: | International journal of cardiology 2013-04, Vol.164 (2), p.193-200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | International journal of cardiology |
container_volume | 164 |
creator | Wallmann, Reinhard Llorca, Javier Gómez-Acebo, Inés Ortega, Álvaro Castellanos Roldan, Fernando Rojo Dierssen-Sotos, Trinidad |
description | Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management. |
doi_str_mv | 10.1016/j.ijcard.2011.06.119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315633946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527311006760</els_id><sourcerecordid>1315633946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</originalsourceid><addsrcrecordid>eNqFkkuL1EAQgBtR3HH1H4jkInhJ7Er6MbkIsqyusKCgnpua7sraMZOMXcnC_Hs7zOiCF08NxVeP_qqEeAmyAgnmbV_F3mMKVS0BKmkqgPaR2MDWqhKsVo_FJmO21LVtLsQz5l5Kqdp2-1Rc1GCtlhI2gr4kCtHPcRqLqSsaWQY8FmvdiL5MNOBMoaQ9pTsa_TFHMOwjc-a5WDiOdwXH_WGgYo2PkeeEc7yn4sfEhzjjUASc8bl40uHA9OL8XorvH66_Xd2Ut58_frp6f1t6pexcdir_JbSKttRK3QRtQm39rmuxNWYLUttAYacwWEDVUuOD0jv04L2x2npsLsWbU91Dmn4txLPLs3oaBhxpWthBA9o0TatMRtUJ9WliTtS5Q4p7TEcH0q2CXe9Ogt0q2EnjsuCc9urcYdntKfxN-mM0A6_PALLHoUs4-sgPnAWjbb32f3fiKPu4j5Qc-5gV520k8rMLU_zfJP8W8ENeQO75k47E_bSkMbt24Lh20n1dj2G9BQApjTWy-Q169bFW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315633946</pqid></control><display><type>article</type><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</creator><creatorcontrib>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</creatorcontrib><description>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</description><identifier>ISSN: 0167-5273</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2011.06.119</identifier><identifier>PMID: 21775001</identifier><identifier>CODEN: IJCDD5</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Biological and medical sciences ; Cardiac hospitalizations ; Cardiology. Vascular system ; Cardiovascular ; Cardiovascular Diseases - diagnosis ; Cardiovascular Diseases - epidemiology ; Cardiovascular Diseases - therapy ; Child ; Child, Preschool ; Cohort ; Cohort Studies ; Databases, Factual - trends ; Female ; Hospital Administration - trends ; Hospitalization - trends ; Humans ; Infant ; Infant, Newborn ; Male ; Medical sciences ; Middle Aged ; Patient Readmission - trends ; Predictive Value of Tests ; Readmissions ; Risk model ; Screening ; Time Factors ; Young Adult</subject><ispartof>International journal of cardiology, 2013-04, Vol.164 (2), p.193-200</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</citedby><cites>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijcard.2011.06.119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27165726$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21775001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallmann, Reinhard</creatorcontrib><creatorcontrib>Llorca, Javier</creatorcontrib><creatorcontrib>Gómez-Acebo, Inés</creatorcontrib><creatorcontrib>Ortega, Álvaro Castellanos</creatorcontrib><creatorcontrib>Roldan, Fernando Rojo</creatorcontrib><creatorcontrib>Dierssen-Sotos, Trinidad</creatorcontrib><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><description>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biological and medical sciences</subject><subject>Cardiac hospitalizations</subject><subject>Cardiology. Vascular system</subject><subject>Cardiovascular</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Cardiovascular Diseases - therapy</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cohort</subject><subject>Cohort Studies</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Hospital Administration - trends</subject><subject>Hospitalization - trends</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Patient Readmission - trends</subject><subject>Predictive Value of Tests</subject><subject>Readmissions</subject><subject>Risk model</subject><subject>Screening</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0167-5273</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuL1EAQgBtR3HH1H4jkInhJ7Er6MbkIsqyusKCgnpua7sraMZOMXcnC_Hs7zOiCF08NxVeP_qqEeAmyAgnmbV_F3mMKVS0BKmkqgPaR2MDWqhKsVo_FJmO21LVtLsQz5l5Kqdp2-1Rc1GCtlhI2gr4kCtHPcRqLqSsaWQY8FmvdiL5MNOBMoaQ9pTsa_TFHMOwjc-a5WDiOdwXH_WGgYo2PkeeEc7yn4sfEhzjjUASc8bl40uHA9OL8XorvH66_Xd2Ut58_frp6f1t6pexcdir_JbSKttRK3QRtQm39rmuxNWYLUttAYacwWEDVUuOD0jv04L2x2npsLsWbU91Dmn4txLPLs3oaBhxpWthBA9o0TatMRtUJ9WliTtS5Q4p7TEcH0q2CXe9Ogt0q2EnjsuCc9urcYdntKfxN-mM0A6_PALLHoUs4-sgPnAWjbb32f3fiKPu4j5Qc-5gV520k8rMLU_zfJP8W8ENeQO75k47E_bSkMbt24Lh20n1dj2G9BQApjTWy-Q169bFW</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Wallmann, Reinhard</creator><creator>Llorca, Javier</creator><creator>Gómez-Acebo, Inés</creator><creator>Ortega, Álvaro Castellanos</creator><creator>Roldan, Fernando Rojo</creator><creator>Dierssen-Sotos, Trinidad</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130405</creationdate><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><author>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biological and medical sciences</topic><topic>Cardiac hospitalizations</topic><topic>Cardiology. Vascular system</topic><topic>Cardiovascular</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Cardiovascular Diseases - therapy</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cohort</topic><topic>Cohort Studies</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Hospital Administration - trends</topic><topic>Hospitalization - trends</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Patient Readmission - trends</topic><topic>Predictive Value of Tests</topic><topic>Readmissions</topic><topic>Risk model</topic><topic>Screening</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallmann, Reinhard</creatorcontrib><creatorcontrib>Llorca, Javier</creatorcontrib><creatorcontrib>Gómez-Acebo, Inés</creatorcontrib><creatorcontrib>Ortega, Álvaro Castellanos</creatorcontrib><creatorcontrib>Roldan, Fernando Rojo</creatorcontrib><creatorcontrib>Dierssen-Sotos, Trinidad</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallmann, Reinhard</au><au>Llorca, Javier</au><au>Gómez-Acebo, Inés</au><au>Ortega, Álvaro Castellanos</au><au>Roldan, Fernando Rojo</au><au>Dierssen-Sotos, Trinidad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>164</volume><issue>2</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>0167-5273</issn><eissn>1874-1754</eissn><coden>IJCDD5</coden><abstract>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>21775001</pmid><doi>10.1016/j.ijcard.2011.06.119</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-5273 |
ispartof | International journal of cardiology, 2013-04, Vol.164 (2), p.193-200 |
issn | 0167-5273 1874-1754 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315633946 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adolescent Adult Aged Aged, 80 and over Biological and medical sciences Cardiac hospitalizations Cardiology. Vascular system Cardiovascular Cardiovascular Diseases - diagnosis Cardiovascular Diseases - epidemiology Cardiovascular Diseases - therapy Child Child, Preschool Cohort Cohort Studies Databases, Factual - trends Female Hospital Administration - trends Hospitalization - trends Humans Infant Infant, Newborn Male Medical sciences Middle Aged Patient Readmission - trends Predictive Value of Tests Readmissions Risk model Screening Time Factors Young Adult |
title | Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%2030-day%20cardiac-related-emergency-readmissions%20using%20simple%20administrative%20hospital%20data&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Wallmann,%20Reinhard&rft.date=2013-04-05&rft.volume=164&rft.issue=2&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=0167-5273&rft.eissn=1874-1754&rft.coden=IJCDD5&rft_id=info:doi/10.1016/j.ijcard.2011.06.119&rft_dat=%3Cproquest_cross%3E1315633946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315633946&rft_id=info:pmid/21775001&rft_els_id=S0167527311006760&rfr_iscdi=true |