Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data

Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cardiology 2013-04, Vol.164 (2), p.193-200
Hauptverfasser: Wallmann, Reinhard, Llorca, Javier, Gómez-Acebo, Inés, Ortega, Álvaro Castellanos, Roldan, Fernando Rojo, Dierssen-Sotos, Trinidad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 2
container_start_page 193
container_title International journal of cardiology
container_volume 164
creator Wallmann, Reinhard
Llorca, Javier
Gómez-Acebo, Inés
Ortega, Álvaro Castellanos
Roldan, Fernando Rojo
Dierssen-Sotos, Trinidad
description Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.
doi_str_mv 10.1016/j.ijcard.2011.06.119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315633946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167527311006760</els_id><sourcerecordid>1315633946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</originalsourceid><addsrcrecordid>eNqFkkuL1EAQgBtR3HH1H4jkInhJ7Er6MbkIsqyusKCgnpua7sraMZOMXcnC_Hs7zOiCF08NxVeP_qqEeAmyAgnmbV_F3mMKVS0BKmkqgPaR2MDWqhKsVo_FJmO21LVtLsQz5l5Kqdp2-1Rc1GCtlhI2gr4kCtHPcRqLqSsaWQY8FmvdiL5MNOBMoaQ9pTsa_TFHMOwjc-a5WDiOdwXH_WGgYo2PkeeEc7yn4sfEhzjjUASc8bl40uHA9OL8XorvH66_Xd2Ut58_frp6f1t6pexcdir_JbSKttRK3QRtQm39rmuxNWYLUttAYacwWEDVUuOD0jv04L2x2npsLsWbU91Dmn4txLPLs3oaBhxpWthBA9o0TatMRtUJ9WliTtS5Q4p7TEcH0q2CXe9Ogt0q2EnjsuCc9urcYdntKfxN-mM0A6_PALLHoUs4-sgPnAWjbb32f3fiKPu4j5Qc-5gV520k8rMLU_zfJP8W8ENeQO75k47E_bSkMbt24Lh20n1dj2G9BQApjTWy-Q169bFW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315633946</pqid></control><display><type>article</type><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</creator><creatorcontrib>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</creatorcontrib><description>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</description><identifier>ISSN: 0167-5273</identifier><identifier>EISSN: 1874-1754</identifier><identifier>DOI: 10.1016/j.ijcard.2011.06.119</identifier><identifier>PMID: 21775001</identifier><identifier>CODEN: IJCDD5</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Biological and medical sciences ; Cardiac hospitalizations ; Cardiology. Vascular system ; Cardiovascular ; Cardiovascular Diseases - diagnosis ; Cardiovascular Diseases - epidemiology ; Cardiovascular Diseases - therapy ; Child ; Child, Preschool ; Cohort ; Cohort Studies ; Databases, Factual - trends ; Female ; Hospital Administration - trends ; Hospitalization - trends ; Humans ; Infant ; Infant, Newborn ; Male ; Medical sciences ; Middle Aged ; Patient Readmission - trends ; Predictive Value of Tests ; Readmissions ; Risk model ; Screening ; Time Factors ; Young Adult</subject><ispartof>International journal of cardiology, 2013-04, Vol.164 (2), p.193-200</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</citedby><cites>FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijcard.2011.06.119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27165726$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21775001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallmann, Reinhard</creatorcontrib><creatorcontrib>Llorca, Javier</creatorcontrib><creatorcontrib>Gómez-Acebo, Inés</creatorcontrib><creatorcontrib>Ortega, Álvaro Castellanos</creatorcontrib><creatorcontrib>Roldan, Fernando Rojo</creatorcontrib><creatorcontrib>Dierssen-Sotos, Trinidad</creatorcontrib><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><title>International journal of cardiology</title><addtitle>Int J Cardiol</addtitle><description>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biological and medical sciences</subject><subject>Cardiac hospitalizations</subject><subject>Cardiology. Vascular system</subject><subject>Cardiovascular</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Cardiovascular Diseases - therapy</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cohort</subject><subject>Cohort Studies</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Hospital Administration - trends</subject><subject>Hospitalization - trends</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Patient Readmission - trends</subject><subject>Predictive Value of Tests</subject><subject>Readmissions</subject><subject>Risk model</subject><subject>Screening</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0167-5273</issn><issn>1874-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuL1EAQgBtR3HH1H4jkInhJ7Er6MbkIsqyusKCgnpua7sraMZOMXcnC_Hs7zOiCF08NxVeP_qqEeAmyAgnmbV_F3mMKVS0BKmkqgPaR2MDWqhKsVo_FJmO21LVtLsQz5l5Kqdp2-1Rc1GCtlhI2gr4kCtHPcRqLqSsaWQY8FmvdiL5MNOBMoaQ9pTsa_TFHMOwjc-a5WDiOdwXH_WGgYo2PkeeEc7yn4sfEhzjjUASc8bl40uHA9OL8XorvH66_Xd2Ut58_frp6f1t6pexcdir_JbSKttRK3QRtQm39rmuxNWYLUttAYacwWEDVUuOD0jv04L2x2npsLsWbU91Dmn4txLPLs3oaBhxpWthBA9o0TatMRtUJ9WliTtS5Q4p7TEcH0q2CXe9Ogt0q2EnjsuCc9urcYdntKfxN-mM0A6_PALLHoUs4-sgPnAWjbb32f3fiKPu4j5Qc-5gV520k8rMLU_zfJP8W8ENeQO75k47E_bSkMbt24Lh20n1dj2G9BQApjTWy-Q169bFW</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Wallmann, Reinhard</creator><creator>Llorca, Javier</creator><creator>Gómez-Acebo, Inés</creator><creator>Ortega, Álvaro Castellanos</creator><creator>Roldan, Fernando Rojo</creator><creator>Dierssen-Sotos, Trinidad</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130405</creationdate><title>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</title><author>Wallmann, Reinhard ; Llorca, Javier ; Gómez-Acebo, Inés ; Ortega, Álvaro Castellanos ; Roldan, Fernando Rojo ; Dierssen-Sotos, Trinidad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f4201d94e8e9053d56d27cbf9a96681057dedb4ad71a49e3cd45bac1cc6757ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biological and medical sciences</topic><topic>Cardiac hospitalizations</topic><topic>Cardiology. Vascular system</topic><topic>Cardiovascular</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Cardiovascular Diseases - therapy</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cohort</topic><topic>Cohort Studies</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Hospital Administration - trends</topic><topic>Hospitalization - trends</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Patient Readmission - trends</topic><topic>Predictive Value of Tests</topic><topic>Readmissions</topic><topic>Risk model</topic><topic>Screening</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallmann, Reinhard</creatorcontrib><creatorcontrib>Llorca, Javier</creatorcontrib><creatorcontrib>Gómez-Acebo, Inés</creatorcontrib><creatorcontrib>Ortega, Álvaro Castellanos</creatorcontrib><creatorcontrib>Roldan, Fernando Rojo</creatorcontrib><creatorcontrib>Dierssen-Sotos, Trinidad</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallmann, Reinhard</au><au>Llorca, Javier</au><au>Gómez-Acebo, Inés</au><au>Ortega, Álvaro Castellanos</au><au>Roldan, Fernando Rojo</au><au>Dierssen-Sotos, Trinidad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data</atitle><jtitle>International journal of cardiology</jtitle><addtitle>Int J Cardiol</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>164</volume><issue>2</issue><spage>193</spage><epage>200</epage><pages>193-200</pages><issn>0167-5273</issn><eissn>1874-1754</eissn><coden>IJCDD5</coden><abstract>Abstract Background Control and reduction of cardiovascular-disease-related readmissions is clinically, logistically and politically challenging. Recent strategies focus on 30-day readmissions. A screening tool for the detection of potential cases is necessary to make further case management more efficient. Methods Cohort study. Hospital administrative data were analyzed in order to obtain information about cardiac-related hospitalizations from 2003 to 2009 at a Spanish academic tertiary care center. Predictor-variables of admissions that presented or did not present 30-day cardiac-related readmission were compared. A prediction model was constructed and tested on a validation sample. Model performance was assessed for all cardiac diseases and for 24 main-cardiac-disease-sets. Results The study sample was 35 531 hospital-admissions. The model included 11 predictors: number of previous emergency admission in 180 days, residence out of area, no procedure applied during hospitalization, major or minor therapeutic procedure applied during hospitalization, anemia, hypertensive disease, acute coronary syndrome, congestive heart failure, diabetes and renal disease. The performance indicators applied on all cardiac diseases were: C-statistic = 0.75, Sensitivity = 0.66, Specificity = 0.70, Positive predictive value = 0.10, Negative predictive value = 0.98, Positive likelihood ratio = 2.21 and Negative likelihood ratio = 0.48. Diseases for discriminative prediction are: stenting, circulatory disorders, acute myocardial infarction and defibrillator and pacemaker implantation. Conclusions This study provides a prediction model for 30-day cardiac-related diseases based on available administrative data ready to be integrated as a screening tool. It has reasonable validity and can be used to increase the efficiency of case management.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>21775001</pmid><doi>10.1016/j.ijcard.2011.06.119</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-5273
ispartof International journal of cardiology, 2013-04, Vol.164 (2), p.193-200
issn 0167-5273
1874-1754
language eng
recordid cdi_proquest_miscellaneous_1315633946
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adolescent
Adult
Aged
Aged, 80 and over
Biological and medical sciences
Cardiac hospitalizations
Cardiology. Vascular system
Cardiovascular
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - therapy
Child
Child, Preschool
Cohort
Cohort Studies
Databases, Factual - trends
Female
Hospital Administration - trends
Hospitalization - trends
Humans
Infant
Infant, Newborn
Male
Medical sciences
Middle Aged
Patient Readmission - trends
Predictive Value of Tests
Readmissions
Risk model
Screening
Time Factors
Young Adult
title Prediction of 30-day cardiac-related-emergency-readmissions using simple administrative hospital data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%2030-day%20cardiac-related-emergency-readmissions%20using%20simple%20administrative%20hospital%20data&rft.jtitle=International%20journal%20of%20cardiology&rft.au=Wallmann,%20Reinhard&rft.date=2013-04-05&rft.volume=164&rft.issue=2&rft.spage=193&rft.epage=200&rft.pages=193-200&rft.issn=0167-5273&rft.eissn=1874-1754&rft.coden=IJCDD5&rft_id=info:doi/10.1016/j.ijcard.2011.06.119&rft_dat=%3Cproquest_cross%3E1315633946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315633946&rft_id=info:pmid/21775001&rft_els_id=S0167527311006760&rfr_iscdi=true