Magnetic resonance imaging at frequencies below 1 kHz

Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2013-02, Vol.31 (2), p.171-177
Hauptverfasser: Hilschenz, Ingo, Körber, Rainer, Scheer, Hans-Jürgen, Fedele, Tommaso, Albrecht, Hans-Helge, Mario Cassará, Antonino, Hartwig, Stefan, Trahms, Lutz, Haase, Jürgen, Burghoff, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 171
container_title Magnetic resonance imaging
container_volume 31
creator Hilschenz, Ingo
Körber, Rainer
Scheer, Hans-Jürgen
Fedele, Tommaso
Albrecht, Hans-Helge
Mario Cassará, Antonino
Hartwig, Stefan
Trahms, Lutz
Haase, Jürgen
Burghoff, Martin
description Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.
doi_str_mv 10.1016/j.mri.2012.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315624568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X1200224X</els_id><sourcerecordid>1315624568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotvCB-gF5cglYcaxHVtISKjqH6QiDoDUm-U4k5W32aTY2Vbl09fRthx6KKe5vPf05vcYO0aoEFB92lTbGCoOyCtQFaB4xVaom7qU2ojXbAVNDWXD5dUBO0xpAwCS1_ItO-BcG60MrJj87tYjzcEXkdI0utFTEbZuHcZ14eaij_RnR6MPlIqWhumuwOL64u879qZ3Q6L3j_eI_T47_XVyUV7-OP928vWy9ELgXPamV53yjhswNZrcufEetGylMFLUjQPofSclb1BrTtSi6bxG1bR930Ar6iP2cZ97E6fcI812G5KnYXAjTbtksUapuJBK_1_KNQfBkS-puJf6OKUUqbc3Mf8c7y2CXcDajc1g7QLWgrIZbPZ8eIzftVvq_jmeSGbB572AMo_bQNGmTC3j7EIkP9tuCi_Gf3nm9kMYg3fDNd1T2ky7OGbQFm3KHvtzWXYZFjkA5-KqfgDVcJs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282042124</pqid></control><display><type>article</type><title>Magnetic resonance imaging at frequencies below 1 kHz</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</creator><creatorcontrib>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</creatorcontrib><description>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.06.014</identifier><identifier>PMID: 22898690</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Brain ; Brain - pathology ; Computer Simulation ; Equipment Design ; Fourier Analysis ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Low-field MRI ; Magnetic Fields ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; median nerve ; MEG ; Neuroimaging ; Neuronal currents ; Neurons - pathology ; Phantoms, Imaging ; Photons ; Radiology ; Resonant mechanism ; Signal-To-Noise Ratio ; Time Factors</subject><ispartof>Magnetic resonance imaging, 2013-02, Vol.31 (2), p.171-177</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</citedby><cites>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2012.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22898690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hilschenz, Ingo</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Scheer, Hans-Jürgen</creatorcontrib><creatorcontrib>Fedele, Tommaso</creatorcontrib><creatorcontrib>Albrecht, Hans-Helge</creatorcontrib><creatorcontrib>Mario Cassará, Antonino</creatorcontrib><creatorcontrib>Hartwig, Stefan</creatorcontrib><creatorcontrib>Trahms, Lutz</creatorcontrib><creatorcontrib>Haase, Jürgen</creatorcontrib><creatorcontrib>Burghoff, Martin</creatorcontrib><title>Magnetic resonance imaging at frequencies below 1 kHz</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Low-field MRI</subject><subject>Magnetic Fields</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>median nerve</subject><subject>MEG</subject><subject>Neuroimaging</subject><subject>Neuronal currents</subject><subject>Neurons - pathology</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>Radiology</subject><subject>Resonant mechanism</subject><subject>Signal-To-Noise Ratio</subject><subject>Time Factors</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotvCB-gF5cglYcaxHVtISKjqH6QiDoDUm-U4k5W32aTY2Vbl09fRthx6KKe5vPf05vcYO0aoEFB92lTbGCoOyCtQFaB4xVaom7qU2ojXbAVNDWXD5dUBO0xpAwCS1_ItO-BcG60MrJj87tYjzcEXkdI0utFTEbZuHcZ14eaij_RnR6MPlIqWhumuwOL64u879qZ3Q6L3j_eI_T47_XVyUV7-OP928vWy9ELgXPamV53yjhswNZrcufEetGylMFLUjQPofSclb1BrTtSi6bxG1bR930Ar6iP2cZ97E6fcI812G5KnYXAjTbtksUapuJBK_1_KNQfBkS-puJf6OKUUqbc3Mf8c7y2CXcDajc1g7QLWgrIZbPZ8eIzftVvq_jmeSGbB572AMo_bQNGmTC3j7EIkP9tuCi_Gf3nm9kMYg3fDNd1T2ky7OGbQFm3KHvtzWXYZFjkA5-KqfgDVcJs0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hilschenz, Ingo</creator><creator>Körber, Rainer</creator><creator>Scheer, Hans-Jürgen</creator><creator>Fedele, Tommaso</creator><creator>Albrecht, Hans-Helge</creator><creator>Mario Cassará, Antonino</creator><creator>Hartwig, Stefan</creator><creator>Trahms, Lutz</creator><creator>Haase, Jürgen</creator><creator>Burghoff, Martin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Magnetic resonance imaging at frequencies below 1 kHz</title><author>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Low-field MRI</topic><topic>Magnetic Fields</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>median nerve</topic><topic>MEG</topic><topic>Neuroimaging</topic><topic>Neuronal currents</topic><topic>Neurons - pathology</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>Radiology</topic><topic>Resonant mechanism</topic><topic>Signal-To-Noise Ratio</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilschenz, Ingo</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Scheer, Hans-Jürgen</creatorcontrib><creatorcontrib>Fedele, Tommaso</creatorcontrib><creatorcontrib>Albrecht, Hans-Helge</creatorcontrib><creatorcontrib>Mario Cassará, Antonino</creatorcontrib><creatorcontrib>Hartwig, Stefan</creatorcontrib><creatorcontrib>Trahms, Lutz</creatorcontrib><creatorcontrib>Haase, Jürgen</creatorcontrib><creatorcontrib>Burghoff, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilschenz, Ingo</au><au>Körber, Rainer</au><au>Scheer, Hans-Jürgen</au><au>Fedele, Tommaso</au><au>Albrecht, Hans-Helge</au><au>Mario Cassará, Antonino</au><au>Hartwig, Stefan</au><au>Trahms, Lutz</au><au>Haase, Jürgen</au><au>Burghoff, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance imaging at frequencies below 1 kHz</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>31</volume><issue>2</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22898690</pmid><doi>10.1016/j.mri.2012.06.014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2013-02, Vol.31 (2), p.171-177
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_1315624568
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Brain
Brain - pathology
Computer Simulation
Equipment Design
Fourier Analysis
Humans
Image processing
Image Processing, Computer-Assisted
Low-field MRI
Magnetic Fields
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
median nerve
MEG
Neuroimaging
Neuronal currents
Neurons - pathology
Phantoms, Imaging
Photons
Radiology
Resonant mechanism
Signal-To-Noise Ratio
Time Factors
title Magnetic resonance imaging at frequencies below 1 kHz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20imaging%20at%20frequencies%20below%201%20kHz&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Hilschenz,%20Ingo&rft.date=2013-02-01&rft.volume=31&rft.issue=2&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.06.014&rft_dat=%3Cproquest_cross%3E1315624568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282042124&rft_id=info:pmid/22898690&rft_els_id=1_s2_0_S0730725X1200224X&rfr_iscdi=true