Magnetic resonance imaging at frequencies below 1 kHz
Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2013-02, Vol.31 (2), p.171-177 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Magnetic resonance imaging |
container_volume | 31 |
creator | Hilschenz, Ingo Körber, Rainer Scheer, Hans-Jürgen Fedele, Tommaso Albrecht, Hans-Helge Mario Cassará, Antonino Hartwig, Stefan Trahms, Lutz Haase, Jürgen Burghoff, Martin |
description | Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents. |
doi_str_mv | 10.1016/j.mri.2012.06.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315624568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X1200224X</els_id><sourcerecordid>1315624568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotvCB-gF5cglYcaxHVtISKjqH6QiDoDUm-U4k5W32aTY2Vbl09fRthx6KKe5vPf05vcYO0aoEFB92lTbGCoOyCtQFaB4xVaom7qU2ojXbAVNDWXD5dUBO0xpAwCS1_ItO-BcG60MrJj87tYjzcEXkdI0utFTEbZuHcZ14eaij_RnR6MPlIqWhumuwOL64u879qZ3Q6L3j_eI_T47_XVyUV7-OP928vWy9ELgXPamV53yjhswNZrcufEetGylMFLUjQPofSclb1BrTtSi6bxG1bR930Ar6iP2cZ97E6fcI812G5KnYXAjTbtksUapuJBK_1_KNQfBkS-puJf6OKUUqbc3Mf8c7y2CXcDajc1g7QLWgrIZbPZ8eIzftVvq_jmeSGbB572AMo_bQNGmTC3j7EIkP9tuCi_Gf3nm9kMYg3fDNd1T2ky7OGbQFm3KHvtzWXYZFjkA5-KqfgDVcJs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282042124</pqid></control><display><type>article</type><title>Magnetic resonance imaging at frequencies below 1 kHz</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</creator><creatorcontrib>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</creatorcontrib><description>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.06.014</identifier><identifier>PMID: 22898690</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Brain ; Brain - pathology ; Computer Simulation ; Equipment Design ; Fourier Analysis ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Low-field MRI ; Magnetic Fields ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; median nerve ; MEG ; Neuroimaging ; Neuronal currents ; Neurons - pathology ; Phantoms, Imaging ; Photons ; Radiology ; Resonant mechanism ; Signal-To-Noise Ratio ; Time Factors</subject><ispartof>Magnetic resonance imaging, 2013-02, Vol.31 (2), p.171-177</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</citedby><cites>FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2012.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22898690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hilschenz, Ingo</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Scheer, Hans-Jürgen</creatorcontrib><creatorcontrib>Fedele, Tommaso</creatorcontrib><creatorcontrib>Albrecht, Hans-Helge</creatorcontrib><creatorcontrib>Mario Cassará, Antonino</creatorcontrib><creatorcontrib>Hartwig, Stefan</creatorcontrib><creatorcontrib>Trahms, Lutz</creatorcontrib><creatorcontrib>Haase, Jürgen</creatorcontrib><creatorcontrib>Burghoff, Martin</creatorcontrib><title>Magnetic resonance imaging at frequencies below 1 kHz</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Low-field MRI</subject><subject>Magnetic Fields</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>median nerve</subject><subject>MEG</subject><subject>Neuroimaging</subject><subject>Neuronal currents</subject><subject>Neurons - pathology</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>Radiology</subject><subject>Resonant mechanism</subject><subject>Signal-To-Noise Ratio</subject><subject>Time Factors</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EotvCB-gF5cglYcaxHVtISKjqH6QiDoDUm-U4k5W32aTY2Vbl09fRthx6KKe5vPf05vcYO0aoEFB92lTbGCoOyCtQFaB4xVaom7qU2ojXbAVNDWXD5dUBO0xpAwCS1_ItO-BcG60MrJj87tYjzcEXkdI0utFTEbZuHcZ14eaij_RnR6MPlIqWhumuwOL64u879qZ3Q6L3j_eI_T47_XVyUV7-OP928vWy9ELgXPamV53yjhswNZrcufEetGylMFLUjQPofSclb1BrTtSi6bxG1bR930Ar6iP2cZ97E6fcI812G5KnYXAjTbtksUapuJBK_1_KNQfBkS-puJf6OKUUqbc3Mf8c7y2CXcDajc1g7QLWgrIZbPZ8eIzftVvq_jmeSGbB572AMo_bQNGmTC3j7EIkP9tuCi_Gf3nm9kMYg3fDNd1T2ky7OGbQFm3KHvtzWXYZFjkA5-KqfgDVcJs0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hilschenz, Ingo</creator><creator>Körber, Rainer</creator><creator>Scheer, Hans-Jürgen</creator><creator>Fedele, Tommaso</creator><creator>Albrecht, Hans-Helge</creator><creator>Mario Cassará, Antonino</creator><creator>Hartwig, Stefan</creator><creator>Trahms, Lutz</creator><creator>Haase, Jürgen</creator><creator>Burghoff, Martin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Magnetic resonance imaging at frequencies below 1 kHz</title><author>Hilschenz, Ingo ; Körber, Rainer ; Scheer, Hans-Jürgen ; Fedele, Tommaso ; Albrecht, Hans-Helge ; Mario Cassará, Antonino ; Hartwig, Stefan ; Trahms, Lutz ; Haase, Jürgen ; Burghoff, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f9f6d6ca29093191017cc085b5495437a00fcd55271882eeb19dc8167bff70b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Low-field MRI</topic><topic>Magnetic Fields</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>median nerve</topic><topic>MEG</topic><topic>Neuroimaging</topic><topic>Neuronal currents</topic><topic>Neurons - pathology</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>Radiology</topic><topic>Resonant mechanism</topic><topic>Signal-To-Noise Ratio</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilschenz, Ingo</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Scheer, Hans-Jürgen</creatorcontrib><creatorcontrib>Fedele, Tommaso</creatorcontrib><creatorcontrib>Albrecht, Hans-Helge</creatorcontrib><creatorcontrib>Mario Cassará, Antonino</creatorcontrib><creatorcontrib>Hartwig, Stefan</creatorcontrib><creatorcontrib>Trahms, Lutz</creatorcontrib><creatorcontrib>Haase, Jürgen</creatorcontrib><creatorcontrib>Burghoff, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilschenz, Ingo</au><au>Körber, Rainer</au><au>Scheer, Hans-Jürgen</au><au>Fedele, Tommaso</au><au>Albrecht, Hans-Helge</au><au>Mario Cassará, Antonino</au><au>Hartwig, Stefan</au><au>Trahms, Lutz</au><au>Haase, Jürgen</au><au>Burghoff, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance imaging at frequencies below 1 kHz</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>31</volume><issue>2</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22898690</pmid><doi>10.1016/j.mri.2012.06.014</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2013-02, Vol.31 (2), p.171-177 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315624568 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Brain Brain - pathology Computer Simulation Equipment Design Fourier Analysis Humans Image processing Image Processing, Computer-Assisted Low-field MRI Magnetic Fields Magnetic resonance imaging Magnetic Resonance Imaging - methods median nerve MEG Neuroimaging Neuronal currents Neurons - pathology Phantoms, Imaging Photons Radiology Resonant mechanism Signal-To-Noise Ratio Time Factors |
title | Magnetic resonance imaging at frequencies below 1 kHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20imaging%20at%20frequencies%20below%201%20kHz&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Hilschenz,%20Ingo&rft.date=2013-02-01&rft.volume=31&rft.issue=2&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.06.014&rft_dat=%3Cproquest_cross%3E1315624568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282042124&rft_id=info:pmid/22898690&rft_els_id=1_s2_0_S0730725X1200224X&rfr_iscdi=true |