Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography

Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2013-02, Vol.31 (2), p.296-312
Hauptverfasser: Ratnarajah, Nagulan, Simmons, Andrew, Bertoni, Miguel, Hojjatoleslami, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 2
container_start_page 296
container_title Magnetic resonance imaging
container_volume 31
creator Ratnarajah, Nagulan
Simmons, Andrew
Bertoni, Miguel
Hojjatoleslami, Ali
description Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.
doi_str_mv 10.1016/j.mri.2012.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315624249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X12002809</els_id><sourcerecordid>1315624249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEotPCA7BBXrJJuP6LE5CQUEUBqRILisTOcpybqYfEHmwHNA_C--LRlC5YwMoLf-dc-5xbVc8oNBRo-3LXLNE1DChrQDUA4kG1oZ3itex68bDagOJQKya_nlXnKe0AQDIuH1dnjPW9ZAw21a-bn6HO6FOIZAkjzvVgEo5kCCGnHM1-7_yWBE_sbFJykyt393jc34Y5bB2mVwRTdovJrqBhIqu3GLNxPh-I82RyA0YSokOfT4zxI9nHMJjBza5ILSnDbA7bMvL28KR6NJk54dO786L6cvXu5vJDff3p_cfLt9e1FYLmesRBYj9y0fYTp5MSUwfYqVHwwciet0pNBpiiUlrDAdte9Ix1HTXMjgYZ8Ivqxcm3POX7Wr6gF5cszrPxGNakKaeyZYKJ_v8o6xgI2nWyoPSE2hhSijjpfSzZxIOmoI_F6Z0uxeljcRqULsUVzfM7-3VYcLxX_GmqAK9PAJY8fjiMOtkSp8XRRbRZj8H90_7NX2o7O--smb_hAdMurNGXoDXVqWj05-PmHBeHMgDWQc9_A6k6waI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282041885</pqid></control><display><type>article</type><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</creator><creatorcontrib>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</creatorcontrib><description>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.07.004</identifier><identifier>PMID: 22995220</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Brain ; Brain - pathology ; Brain Mapping - methods ; Classification ; Computational neuroscience ; Constrained two-tensor model ; Data acquisition ; Data processing ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion MR imaging ; Fibers ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Model-based bootstrapping ; Models, Statistical ; Monte Carlo Method ; Phantoms, Imaging ; Probabilistic tractography ; Probability ; Radiology ; Time Factors</subject><ispartof>Magnetic resonance imaging, 2013-02, Vol.31 (2), p.296-312</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</citedby><cites>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X12002809$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratnarajah, Nagulan</creatorcontrib><creatorcontrib>Simmons, Andrew</creatorcontrib><creatorcontrib>Bertoni, Miguel</creatorcontrib><creatorcontrib>Hojjatoleslami, Ali</creatorcontrib><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Computational neuroscience</subject><subject>Constrained two-tensor model</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion MR imaging</subject><subject>Fibers</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Model-based bootstrapping</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>Probabilistic tractography</subject><subject>Probability</subject><subject>Radiology</subject><subject>Time Factors</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEotPCA7BBXrJJuP6LE5CQUEUBqRILisTOcpybqYfEHmwHNA_C--LRlC5YwMoLf-dc-5xbVc8oNBRo-3LXLNE1DChrQDUA4kG1oZ3itex68bDagOJQKya_nlXnKe0AQDIuH1dnjPW9ZAw21a-bn6HO6FOIZAkjzvVgEo5kCCGnHM1-7_yWBE_sbFJykyt393jc34Y5bB2mVwRTdovJrqBhIqu3GLNxPh-I82RyA0YSokOfT4zxI9nHMJjBza5ILSnDbA7bMvL28KR6NJk54dO786L6cvXu5vJDff3p_cfLt9e1FYLmesRBYj9y0fYTp5MSUwfYqVHwwciet0pNBpiiUlrDAdte9Ix1HTXMjgYZ8Ivqxcm3POX7Wr6gF5cszrPxGNakKaeyZYKJ_v8o6xgI2nWyoPSE2hhSijjpfSzZxIOmoI_F6Z0uxeljcRqULsUVzfM7-3VYcLxX_GmqAK9PAJY8fjiMOtkSp8XRRbRZj8H90_7NX2o7O--smb_hAdMurNGXoDXVqWj05-PmHBeHMgDWQc9_A6k6waI</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ratnarajah, Nagulan</creator><creator>Simmons, Andrew</creator><creator>Bertoni, Miguel</creator><creator>Hojjatoleslami, Ali</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><author>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Computational neuroscience</topic><topic>Constrained two-tensor model</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion MR imaging</topic><topic>Fibers</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Model-based bootstrapping</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>Probabilistic tractography</topic><topic>Probability</topic><topic>Radiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratnarajah, Nagulan</creatorcontrib><creatorcontrib>Simmons, Andrew</creatorcontrib><creatorcontrib>Bertoni, Miguel</creatorcontrib><creatorcontrib>Hojjatoleslami, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratnarajah, Nagulan</au><au>Simmons, Andrew</au><au>Bertoni, Miguel</au><au>Hojjatoleslami, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>31</volume><issue>2</issue><spage>296</spage><epage>312</epage><pages>296-312</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22995220</pmid><doi>10.1016/j.mri.2012.07.004</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2013-02, Vol.31 (2), p.296-312
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_1315624249
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Brain
Brain - pathology
Brain Mapping - methods
Classification
Computational neuroscience
Constrained two-tensor model
Data acquisition
Data processing
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion MR imaging
Fibers
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Model-based bootstrapping
Models, Statistical
Monte Carlo Method
Phantoms, Imaging
Probabilistic tractography
Probability
Radiology
Time Factors
title Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-tensor%20model-based%20bootstrapping%20on%20classified%20tensor%20morphologies:%20estimation%20of%20uncertainty%20in%20fiber%20orientation%20and%20probabilistic%20tractography&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Ratnarajah,%20Nagulan&rft.date=2013-02-01&rft.volume=31&rft.issue=2&rft.spage=296&rft.epage=312&rft.pages=296-312&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.07.004&rft_dat=%3Cproquest_cross%3E1315624249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282041885&rft_id=info:pmid/22995220&rft_els_id=1_s2_0_S0730725X12002809&rfr_iscdi=true