Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography
Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2013-02, Vol.31 (2), p.296-312 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 2 |
container_start_page | 296 |
container_title | Magnetic resonance imaging |
container_volume | 31 |
creator | Ratnarajah, Nagulan Simmons, Andrew Bertoni, Miguel Hojjatoleslami, Ali |
description | Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches. |
doi_str_mv | 10.1016/j.mri.2012.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315624249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X12002809</els_id><sourcerecordid>1315624249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEotPCA7BBXrJJuP6LE5CQUEUBqRILisTOcpybqYfEHmwHNA_C--LRlC5YwMoLf-dc-5xbVc8oNBRo-3LXLNE1DChrQDUA4kG1oZ3itex68bDagOJQKya_nlXnKe0AQDIuH1dnjPW9ZAw21a-bn6HO6FOIZAkjzvVgEo5kCCGnHM1-7_yWBE_sbFJykyt393jc34Y5bB2mVwRTdovJrqBhIqu3GLNxPh-I82RyA0YSokOfT4zxI9nHMJjBza5ILSnDbA7bMvL28KR6NJk54dO786L6cvXu5vJDff3p_cfLt9e1FYLmesRBYj9y0fYTp5MSUwfYqVHwwciet0pNBpiiUlrDAdte9Ix1HTXMjgYZ8Ivqxcm3POX7Wr6gF5cszrPxGNakKaeyZYKJ_v8o6xgI2nWyoPSE2hhSijjpfSzZxIOmoI_F6Z0uxeljcRqULsUVzfM7-3VYcLxX_GmqAK9PAJY8fjiMOtkSp8XRRbRZj8H90_7NX2o7O--smb_hAdMurNGXoDXVqWj05-PmHBeHMgDWQc9_A6k6waI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282041885</pqid></control><display><type>article</type><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</creator><creatorcontrib>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</creatorcontrib><description>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2012.07.004</identifier><identifier>PMID: 22995220</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Brain ; Brain - pathology ; Brain Mapping - methods ; Classification ; Computational neuroscience ; Constrained two-tensor model ; Data acquisition ; Data processing ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion MR imaging ; Fibers ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Model-based bootstrapping ; Models, Statistical ; Monte Carlo Method ; Phantoms, Imaging ; Probabilistic tractography ; Probability ; Radiology ; Time Factors</subject><ispartof>Magnetic resonance imaging, 2013-02, Vol.31 (2), p.296-312</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</citedby><cites>FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X12002809$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22995220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratnarajah, Nagulan</creatorcontrib><creatorcontrib>Simmons, Andrew</creatorcontrib><creatorcontrib>Bertoni, Miguel</creatorcontrib><creatorcontrib>Hojjatoleslami, Ali</creatorcontrib><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Computational neuroscience</subject><subject>Constrained two-tensor model</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion MR imaging</subject><subject>Fibers</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Model-based bootstrapping</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>Probabilistic tractography</subject><subject>Probability</subject><subject>Radiology</subject><subject>Time Factors</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEotPCA7BBXrJJuP6LE5CQUEUBqRILisTOcpybqYfEHmwHNA_C--LRlC5YwMoLf-dc-5xbVc8oNBRo-3LXLNE1DChrQDUA4kG1oZ3itex68bDagOJQKya_nlXnKe0AQDIuH1dnjPW9ZAw21a-bn6HO6FOIZAkjzvVgEo5kCCGnHM1-7_yWBE_sbFJykyt393jc34Y5bB2mVwRTdovJrqBhIqu3GLNxPh-I82RyA0YSokOfT4zxI9nHMJjBza5ILSnDbA7bMvL28KR6NJk54dO786L6cvXu5vJDff3p_cfLt9e1FYLmesRBYj9y0fYTp5MSUwfYqVHwwciet0pNBpiiUlrDAdte9Ix1HTXMjgYZ8Ivqxcm3POX7Wr6gF5cszrPxGNakKaeyZYKJ_v8o6xgI2nWyoPSE2hhSijjpfSzZxIOmoI_F6Z0uxeljcRqULsUVzfM7-3VYcLxX_GmqAK9PAJY8fjiMOtkSp8XRRbRZj8H90_7NX2o7O--smb_hAdMurNGXoDXVqWj05-PmHBeHMgDWQc9_A6k6waI</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ratnarajah, Nagulan</creator><creator>Simmons, Andrew</creator><creator>Bertoni, Miguel</creator><creator>Hojjatoleslami, Ali</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</title><author>Ratnarajah, Nagulan ; Simmons, Andrew ; Bertoni, Miguel ; Hojjatoleslami, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-deb5e9d3469f31f74f80e87d43ba593677fa027155ca30e694922881a2cdae203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Computational neuroscience</topic><topic>Constrained two-tensor model</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion MR imaging</topic><topic>Fibers</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Model-based bootstrapping</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>Probabilistic tractography</topic><topic>Probability</topic><topic>Radiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratnarajah, Nagulan</creatorcontrib><creatorcontrib>Simmons, Andrew</creatorcontrib><creatorcontrib>Bertoni, Miguel</creatorcontrib><creatorcontrib>Hojjatoleslami, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratnarajah, Nagulan</au><au>Simmons, Andrew</au><au>Bertoni, Miguel</au><au>Hojjatoleslami, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>31</volume><issue>2</issue><spage>296</spage><epage>312</epage><pages>296-312</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22995220</pmid><doi>10.1016/j.mri.2012.07.004</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2013-02, Vol.31 (2), p.296-312 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315624249 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Brain Brain - pathology Brain Mapping - methods Classification Computational neuroscience Constrained two-tensor model Data acquisition Data processing Diffusion Diffusion Magnetic Resonance Imaging - methods Diffusion MR imaging Fibers Humans Image Processing, Computer-Assisted - methods Magnetic resonance imaging Model-based bootstrapping Models, Statistical Monte Carlo Method Phantoms, Imaging Probabilistic tractography Probability Radiology Time Factors |
title | Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-tensor%20model-based%20bootstrapping%20on%20classified%20tensor%20morphologies:%20estimation%20of%20uncertainty%20in%20fiber%20orientation%20and%20probabilistic%20tractography&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Ratnarajah,%20Nagulan&rft.date=2013-02-01&rft.volume=31&rft.issue=2&rft.spage=296&rft.epage=312&rft.pages=296-312&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2012.07.004&rft_dat=%3Cproquest_cross%3E1315624249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282041885&rft_id=info:pmid/22995220&rft_els_id=1_s2_0_S0730725X12002809&rfr_iscdi=true |