LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities

Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2013-03, Vol.83 (3), p.778-791
Hauptverfasser: Niu, Chen, Robbins, Chandan M., Pittman, Kelly J., Osborn, joDi L., Stubblefield, Bryan A., Simmons, Robert B., Gilbert, Eric S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 3
container_start_page 778
container_title FEMS microbiology ecology
container_volume 83
creator Niu, Chen
Robbins, Chandan M.
Pittman, Kelly J.
Osborn, joDi L.
Stubblefield, Bryan A.
Simmons, Robert B.
Gilbert, Eric S.
description Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.
doi_str_mv 10.1111/1574-6941.12034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315622842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/1574-6941.12034</oup_id><sourcerecordid>1315622842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModq0--yYDIogw7eRz0kcpWxVWfFCfh0xy46ZkkjWZoMV_3oy7XaUIzUtC7u-cey8Hoee4O8P1nGPes1ZcMHyGSUfZA7Q6_jxEqw4L2Qp2IU7Qk5yvuw5zyrrH6ITQrpdcihX6tSk_PzcuWF8gaMjNOustJKe3TjU6eteMLlrnp8bGNKnZxdDM2xTLt22jyhxdMEVDaklrYAfBQJgbFcydWn0dq1M0yrvZQX6KHlnlMzw73Kfo69X6y-X7dvPp3YfLt5tWs7pIy61RmlA1UgPCGKoMHwkWWpBRcm2VBs0MtpLQkWgQiurKcwZY4lGSXtNT9Hrvu0vxe4E8D5PLGrxXAWLJA6aYC0IkI_ejRNKeUiplRV_eQa9jSaEuslCE8x73olLne0qnmHMCO-ySm1S6GXA3LBEOS2DDEtjwJ8KqeHHwLeME5sjfZlaBVwdAZa28TSpol_9yQvJqtHB8z_1wHm7u6ztcrT_eDvBmr4tl919V-8-0vwEOHcDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282557176</pqid></control><display><type>article</type><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</creator><creatorcontrib>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</creatorcontrib><description>Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/1574-6941.12034</identifier><identifier>PMID: 23078586</identifier><identifier>CODEN: FMECEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal, plant and microbial ecology ; autoinducer‐2 ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; biofilm ; Biofilms ; Biofilms - growth &amp; development ; Biological and medical sciences ; Carbon - metabolism ; Carbon-Sulfur Lyases - genetics ; Carbon-Sulfur Lyases - metabolism ; E coli ; Ecology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Fimbriae, Bacterial - metabolism ; Fundamental and applied biological sciences. Psychology ; Homoserine - analogs &amp; derivatives ; Homoserine - metabolism ; Lactones - metabolism ; Microbial ecology ; Microbiology ; Miscellaneous ; Pentanes - pharmacology ; Phenotype ; quorum sensing ; Uronic Acids - metabolism ; Various environments (extraatmospheric space, air, water)</subject><ispartof>FEMS microbiology ecology, 2013-03, Vol.83 (3), p.778-791</ispartof><rights>2012 Federation of European Microbiological Societies 2012</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2014 INIST-CNRS</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</rights><rights>Copyright © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</citedby><cites>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1574-6941.12034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1574-6941.12034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26852036$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23078586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Robbins, Chandan M.</creatorcontrib><creatorcontrib>Pittman, Kelly J.</creatorcontrib><creatorcontrib>Osborn, joDi L.</creatorcontrib><creatorcontrib>Stubblefield, Bryan A.</creatorcontrib><creatorcontrib>Simmons, Robert B.</creatorcontrib><creatorcontrib>Gilbert, Eric S.</creatorcontrib><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</description><subject>Animal, plant and microbial ecology</subject><subject>autoinducer‐2</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Carbon - metabolism</subject><subject>Carbon-Sulfur Lyases - genetics</subject><subject>Carbon-Sulfur Lyases - metabolism</subject><subject>E coli</subject><subject>Ecology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Homoserine - analogs &amp; derivatives</subject><subject>Homoserine - metabolism</subject><subject>Lactones - metabolism</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Pentanes - pharmacology</subject><subject>Phenotype</subject><subject>quorum sensing</subject><subject>Uronic Acids - metabolism</subject><subject>Various environments (extraatmospheric space, air, water)</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1rFDEUxYModq0--yYDIogw7eRz0kcpWxVWfFCfh0xy46ZkkjWZoMV_3oy7XaUIzUtC7u-cey8Hoee4O8P1nGPes1ZcMHyGSUfZA7Q6_jxEqw4L2Qp2IU7Qk5yvuw5zyrrH6ITQrpdcihX6tSk_PzcuWF8gaMjNOustJKe3TjU6eteMLlrnp8bGNKnZxdDM2xTLt22jyhxdMEVDaklrYAfBQJgbFcydWn0dq1M0yrvZQX6KHlnlMzw73Kfo69X6y-X7dvPp3YfLt5tWs7pIy61RmlA1UgPCGKoMHwkWWpBRcm2VBs0MtpLQkWgQiurKcwZY4lGSXtNT9Hrvu0vxe4E8D5PLGrxXAWLJA6aYC0IkI_ejRNKeUiplRV_eQa9jSaEuslCE8x73olLne0qnmHMCO-ySm1S6GXA3LBEOS2DDEtjwJ8KqeHHwLeME5sjfZlaBVwdAZa28TSpol_9yQvJqtHB8z_1wHm7u6ztcrT_eDvBmr4tl919V-8-0vwEOHcDc</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Niu, Chen</creator><creator>Robbins, Chandan M.</creator><creator>Pittman, Kelly J.</creator><creator>Osborn, joDi L.</creator><creator>Stubblefield, Bryan A.</creator><creator>Simmons, Robert B.</creator><creator>Gilbert, Eric S.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><author>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal, plant and microbial ecology</topic><topic>autoinducer‐2</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Carbon - metabolism</topic><topic>Carbon-Sulfur Lyases - genetics</topic><topic>Carbon-Sulfur Lyases - metabolism</topic><topic>E coli</topic><topic>Ecology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Homoserine - analogs &amp; derivatives</topic><topic>Homoserine - metabolism</topic><topic>Lactones - metabolism</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Pentanes - pharmacology</topic><topic>Phenotype</topic><topic>quorum sensing</topic><topic>Uronic Acids - metabolism</topic><topic>Various environments (extraatmospheric space, air, water)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Robbins, Chandan M.</creatorcontrib><creatorcontrib>Pittman, Kelly J.</creatorcontrib><creatorcontrib>Osborn, joDi L.</creatorcontrib><creatorcontrib>Stubblefield, Bryan A.</creatorcontrib><creatorcontrib>Simmons, Robert B.</creatorcontrib><creatorcontrib>Gilbert, Eric S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Chen</au><au>Robbins, Chandan M.</au><au>Pittman, Kelly J.</au><au>Osborn, joDi L.</au><au>Stubblefield, Bryan A.</au><au>Simmons, Robert B.</au><au>Gilbert, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>83</volume><issue>3</issue><spage>778</spage><epage>791</epage><pages>778-791</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><coden>FMECEZ</coden><abstract>Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23078586</pmid><doi>10.1111/1574-6941.12034</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-6496
ispartof FEMS microbiology ecology, 2013-03, Vol.83 (3), p.778-791
issn 0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_1315622842
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
subjects Animal, plant and microbial ecology
autoinducer‐2
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
biofilm
Biofilms
Biofilms - growth & development
Biological and medical sciences
Carbon - metabolism
Carbon-Sulfur Lyases - genetics
Carbon-Sulfur Lyases - metabolism
E coli
Ecology
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Fimbriae, Bacterial - metabolism
Fundamental and applied biological sciences. Psychology
Homoserine - analogs & derivatives
Homoserine - metabolism
Lactones - metabolism
Microbial ecology
Microbiology
Miscellaneous
Pentanes - pharmacology
Phenotype
quorum sensing
Uronic Acids - metabolism
Various environments (extraatmospheric space, air, water)
title LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LuxS%20influences%20Escherichia%20coli%20biofilm%20formation%20through%20autoinducer-2-dependent%20and%20autoinducer-2-independent%20modalities&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Niu,%20Chen&rft.date=2013-03&rft.volume=83&rft.issue=3&rft.spage=778&rft.epage=791&rft.pages=778-791&rft.issn=0168-6496&rft.eissn=1574-6941&rft.coden=FMECEZ&rft_id=info:doi/10.1111/1574-6941.12034&rft_dat=%3Cproquest_cross%3E1315622842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282557176&rft_id=info:pmid/23078586&rft_oup_id=10.1111/1574-6941.12034&rfr_iscdi=true