LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities
Abstract Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2013-03, Vol.83 (3), p.778-791 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 791 |
---|---|
container_issue | 3 |
container_start_page | 778 |
container_title | FEMS microbiology ecology |
container_volume | 83 |
creator | Niu, Chen Robbins, Chandan M. Pittman, Kelly J. Osborn, joDi L. Stubblefield, Bryan A. Simmons, Robert B. Gilbert, Eric S. |
description | Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions. |
doi_str_mv | 10.1111/1574-6941.12034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315622842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/1574-6941.12034</oup_id><sourcerecordid>1315622842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModq0--yYDIogw7eRz0kcpWxVWfFCfh0xy46ZkkjWZoMV_3oy7XaUIzUtC7u-cey8Hoee4O8P1nGPes1ZcMHyGSUfZA7Q6_jxEqw4L2Qp2IU7Qk5yvuw5zyrrH6ITQrpdcihX6tSk_PzcuWF8gaMjNOustJKe3TjU6eteMLlrnp8bGNKnZxdDM2xTLt22jyhxdMEVDaklrYAfBQJgbFcydWn0dq1M0yrvZQX6KHlnlMzw73Kfo69X6y-X7dvPp3YfLt5tWs7pIy61RmlA1UgPCGKoMHwkWWpBRcm2VBs0MtpLQkWgQiurKcwZY4lGSXtNT9Hrvu0vxe4E8D5PLGrxXAWLJA6aYC0IkI_ejRNKeUiplRV_eQa9jSaEuslCE8x73olLne0qnmHMCO-ySm1S6GXA3LBEOS2DDEtjwJ8KqeHHwLeME5sjfZlaBVwdAZa28TSpol_9yQvJqtHB8z_1wHm7u6ztcrT_eDvBmr4tl919V-8-0vwEOHcDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282557176</pqid></control><display><type>article</type><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</creator><creatorcontrib>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</creatorcontrib><description>Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/1574-6941.12034</identifier><identifier>PMID: 23078586</identifier><identifier>CODEN: FMECEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal, plant and microbial ecology ; autoinducer‐2 ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; biofilm ; Biofilms ; Biofilms - growth & development ; Biological and medical sciences ; Carbon - metabolism ; Carbon-Sulfur Lyases - genetics ; Carbon-Sulfur Lyases - metabolism ; E coli ; Ecology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Fimbriae, Bacterial - metabolism ; Fundamental and applied biological sciences. Psychology ; Homoserine - analogs & derivatives ; Homoserine - metabolism ; Lactones - metabolism ; Microbial ecology ; Microbiology ; Miscellaneous ; Pentanes - pharmacology ; Phenotype ; quorum sensing ; Uronic Acids - metabolism ; Various environments (extraatmospheric space, air, water)</subject><ispartof>FEMS microbiology ecology, 2013-03, Vol.83 (3), p.778-791</ispartof><rights>2012 Federation of European Microbiological Societies 2012</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2014 INIST-CNRS</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</rights><rights>Copyright © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</citedby><cites>FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1574-6941.12034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1574-6941.12034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26852036$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23078586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Robbins, Chandan M.</creatorcontrib><creatorcontrib>Pittman, Kelly J.</creatorcontrib><creatorcontrib>Osborn, joDi L.</creatorcontrib><creatorcontrib>Stubblefield, Bryan A.</creatorcontrib><creatorcontrib>Simmons, Robert B.</creatorcontrib><creatorcontrib>Gilbert, Eric S.</creatorcontrib><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</description><subject>Animal, plant and microbial ecology</subject><subject>autoinducer‐2</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biological and medical sciences</subject><subject>Carbon - metabolism</subject><subject>Carbon-Sulfur Lyases - genetics</subject><subject>Carbon-Sulfur Lyases - metabolism</subject><subject>E coli</subject><subject>Ecology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Homoserine - analogs & derivatives</subject><subject>Homoserine - metabolism</subject><subject>Lactones - metabolism</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Pentanes - pharmacology</subject><subject>Phenotype</subject><subject>quorum sensing</subject><subject>Uronic Acids - metabolism</subject><subject>Various environments (extraatmospheric space, air, water)</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1rFDEUxYModq0--yYDIogw7eRz0kcpWxVWfFCfh0xy46ZkkjWZoMV_3oy7XaUIzUtC7u-cey8Hoee4O8P1nGPes1ZcMHyGSUfZA7Q6_jxEqw4L2Qp2IU7Qk5yvuw5zyrrH6ITQrpdcihX6tSk_PzcuWF8gaMjNOustJKe3TjU6eteMLlrnp8bGNKnZxdDM2xTLt22jyhxdMEVDaklrYAfBQJgbFcydWn0dq1M0yrvZQX6KHlnlMzw73Kfo69X6y-X7dvPp3YfLt5tWs7pIy61RmlA1UgPCGKoMHwkWWpBRcm2VBs0MtpLQkWgQiurKcwZY4lGSXtNT9Hrvu0vxe4E8D5PLGrxXAWLJA6aYC0IkI_ejRNKeUiplRV_eQa9jSaEuslCE8x73olLne0qnmHMCO-ySm1S6GXA3LBEOS2DDEtjwJ8KqeHHwLeME5sjfZlaBVwdAZa28TSpol_9yQvJqtHB8z_1wHm7u6ztcrT_eDvBmr4tl919V-8-0vwEOHcDc</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Niu, Chen</creator><creator>Robbins, Chandan M.</creator><creator>Pittman, Kelly J.</creator><creator>Osborn, joDi L.</creator><creator>Stubblefield, Bryan A.</creator><creator>Simmons, Robert B.</creator><creator>Gilbert, Eric S.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</title><author>Niu, Chen ; Robbins, Chandan M. ; Pittman, Kelly J. ; Osborn, joDi L. ; Stubblefield, Bryan A. ; Simmons, Robert B. ; Gilbert, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-5fdac23ab3de6dd3ad5b216c62b85cfacec4d1f823b2ce6a3cdac54e181b827c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal, plant and microbial ecology</topic><topic>autoinducer‐2</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biological and medical sciences</topic><topic>Carbon - metabolism</topic><topic>Carbon-Sulfur Lyases - genetics</topic><topic>Carbon-Sulfur Lyases - metabolism</topic><topic>E coli</topic><topic>Ecology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Homoserine - analogs & derivatives</topic><topic>Homoserine - metabolism</topic><topic>Lactones - metabolism</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Pentanes - pharmacology</topic><topic>Phenotype</topic><topic>quorum sensing</topic><topic>Uronic Acids - metabolism</topic><topic>Various environments (extraatmospheric space, air, water)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Robbins, Chandan M.</creatorcontrib><creatorcontrib>Pittman, Kelly J.</creatorcontrib><creatorcontrib>Osborn, joDi L.</creatorcontrib><creatorcontrib>Stubblefield, Bryan A.</creatorcontrib><creatorcontrib>Simmons, Robert B.</creatorcontrib><creatorcontrib>Gilbert, Eric S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Chen</au><au>Robbins, Chandan M.</au><au>Pittman, Kelly J.</au><au>Osborn, joDi L.</au><au>Stubblefield, Bryan A.</au><au>Simmons, Robert B.</au><au>Gilbert, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>83</volume><issue>3</issue><spage>778</spage><epage>791</epage><pages>778-791</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><coden>FMECEZ</coden><abstract>Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coliW3110 and an inducible plasmid–luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a ‘spreading’ phenotype, whereas the complement had a ‘climbing’ phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>23078586</pmid><doi>10.1111/1574-6941.12034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-6496 |
ispartof | FEMS microbiology ecology, 2013-03, Vol.83 (3), p.778-791 |
issn | 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315622842 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection |
subjects | Animal, plant and microbial ecology autoinducer‐2 Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology biofilm Biofilms Biofilms - growth & development Biological and medical sciences Carbon - metabolism Carbon-Sulfur Lyases - genetics Carbon-Sulfur Lyases - metabolism E coli Ecology Escherichia coli Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - metabolism Fimbriae, Bacterial - metabolism Fundamental and applied biological sciences. Psychology Homoserine - analogs & derivatives Homoserine - metabolism Lactones - metabolism Microbial ecology Microbiology Miscellaneous Pentanes - pharmacology Phenotype quorum sensing Uronic Acids - metabolism Various environments (extraatmospheric space, air, water) |
title | LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LuxS%20influences%20Escherichia%20coli%20biofilm%20formation%20through%20autoinducer-2-dependent%20and%20autoinducer-2-independent%20modalities&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Niu,%20Chen&rft.date=2013-03&rft.volume=83&rft.issue=3&rft.spage=778&rft.epage=791&rft.pages=778-791&rft.issn=0168-6496&rft.eissn=1574-6941&rft.coden=FMECEZ&rft_id=info:doi/10.1111/1574-6941.12034&rft_dat=%3Cproquest_cross%3E1315622842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282557176&rft_id=info:pmid/23078586&rft_oup_id=10.1111/1574-6941.12034&rfr_iscdi=true |