Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis
Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of c...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2013-03, Vol.97 (5), p.1909-1921 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1921 |
---|---|
container_issue | 5 |
container_start_page | 1909 |
container_title | Applied microbiology and biotechnology |
container_volume | 97 |
creator | Tavares, Luiz F. D. Silva, Patrícia M. Junqueira, Magno Mariano, Danielly C. O. Nogueira, Fábio C. S. Domont, Gilberto B. Freire, Denise M. G. Neves, Bianca C. |
description | Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of chemical structures, including rhamnolipids, typically produced by
Pseudomonas
spp. and also reported within other bacterial genera. The present study is focused on
Burkholderia kururiensis
KP23
T
, a trichloroethylene (TCE)-degrading, N-fixing, and plant growth-promoting bacterium. Herein, we describe the production of rhamnolipids by
B
.
kururiensis
, and its characterization by LTQ-Orbitrap Hybrid Mass Spectrometry, a powerful tool that allowed efficient identification of molecular subpopulations, due to its high selectivity, mass accuracy, and resolving power. The population of rhamnolipids produced by
B
.
kururiensis
revealed molecular species commonly observed in
Pseudomonas
spp. and/or
Burkholderia
spp. In addition, this strain was used as a platform for expression of two
Pseudomonas aeruginosa
biosynthetic enzymes: RhlA, which directly utilizes β-hydroxydecanoyl-ACP intermediates in fatty acid synthesis to generate the HAA, and RhlB, the rhamnosyltransferase 1, which catalyzes the transfer of dTDP-L-rhamnose to β-hydroxy fatty acids in the biosynthesis of rhamnolipids. We show that rhamnolipid production by the engineered
B
.
kururiensis
was increased over 600 % when compared to the wild type. Structural analyses demonstrated a molecular population composed mainly of monorhamnolipids, as opposed to wild-type
B
.
kururiensis
and
P
.
aeruginosa
in which dirhamnolipids are predominant. We conclude that
B
.
kururiensis
is a promising biosurfactant-producing organism, with great potential for environmental and biotechnological applications due to its non-pathogenic characteristics and efficiency as a platform for metabolic engineering and production of tailor-made biosurfactants. |
doi_str_mv | 10.1007/s00253-012-4454-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315622213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337618184</galeid><sourcerecordid>A337618184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-943b626f4b9d4600f936ec011c0ec238f52c896263d8b0490b5bdd7b0a78a3aa3</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhYMoTjv6A9xIgRtd1HjzqFRqOdP4GBgQfGwNqeRWd2aqkzapQttfb5oeHy2KZBHI_c7hnnAIeUzhjAK0LzIAa3gNlNVCNKLu7pAFFZzVIKm4SxZA26Zum06dkAc5X0MBlZT3yQnj0HAKfEE-LdcmGTth8t_M5GOo4lCltdmEOPqtd7napuhmi67qd9UXP7p62m2xMsFVGFY-IKYyu5jTzTqOrtiY6mZOc_IYss8Pyb3BjBkf3d6n5OOrlx-Wb-qrt68vl-dXtW0En-pO8F4yOYi-c0ICDB2XaIFSC2gZV0PDrOoKwZ3qQXTQN71zbQ-mVYYbw0_Js4Nv2fbzjHnSG58tjqMJGOesKaeNZIxR_n-UqVYpSSkt6NM_0Os4p1CC7CnZMcUY_0WtzIjahyFO5Uf3pvqc81ZSRZUo1NlfqHIcbryNAQdf3o8Ez48EhZnw67Qyc8768v27Y5YeWJtizgkHvU1-Y9JOU9D7quhDVXRpgN5XRXdF8-Q23Nxv0P1U_OhGAdgByGUUVph-S_9P1-8InMYp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286928223</pqid></control><display><type>article</type><title>Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tavares, Luiz F. D. ; Silva, Patrícia M. ; Junqueira, Magno ; Mariano, Danielly C. O. ; Nogueira, Fábio C. S. ; Domont, Gilberto B. ; Freire, Denise M. G. ; Neves, Bianca C.</creator><creatorcontrib>Tavares, Luiz F. D. ; Silva, Patrícia M. ; Junqueira, Magno ; Mariano, Danielly C. O. ; Nogueira, Fábio C. S. ; Domont, Gilberto B. ; Freire, Denise M. G. ; Neves, Bianca C.</creatorcontrib><description>Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of chemical structures, including rhamnolipids, typically produced by
Pseudomonas
spp. and also reported within other bacterial genera. The present study is focused on
Burkholderia kururiensis
KP23
T
, a trichloroethylene (TCE)-degrading, N-fixing, and plant growth-promoting bacterium. Herein, we describe the production of rhamnolipids by
B
.
kururiensis
, and its characterization by LTQ-Orbitrap Hybrid Mass Spectrometry, a powerful tool that allowed efficient identification of molecular subpopulations, due to its high selectivity, mass accuracy, and resolving power. The population of rhamnolipids produced by
B
.
kururiensis
revealed molecular species commonly observed in
Pseudomonas
spp. and/or
Burkholderia
spp. In addition, this strain was used as a platform for expression of two
Pseudomonas aeruginosa
biosynthetic enzymes: RhlA, which directly utilizes β-hydroxydecanoyl-ACP intermediates in fatty acid synthesis to generate the HAA, and RhlB, the rhamnosyltransferase 1, which catalyzes the transfer of dTDP-L-rhamnose to β-hydroxy fatty acids in the biosynthesis of rhamnolipids. We show that rhamnolipid production by the engineered
B
.
kururiensis
was increased over 600 % when compared to the wild type. Structural analyses demonstrated a molecular population composed mainly of monorhamnolipids, as opposed to wild-type
B
.
kururiensis
and
P
.
aeruginosa
in which dirhamnolipids are predominant. We conclude that
B
.
kururiensis
is a promising biosurfactant-producing organism, with great potential for environmental and biotechnological applications due to its non-pathogenic characteristics and efficiency as a platform for metabolic engineering and production of tailor-made biosurfactants.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-012-4454-9</identifier><identifier>PMID: 23053103</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Bacteria ; Bioengineering ; Biofilms ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; Burkholderia ; Burkholderia - genetics ; Burkholderia - metabolism ; Cloning, Molecular ; Engineering ; Fatty acids ; Gene Expression ; Genes ; Glycolipids - chemistry ; Glycolipids - metabolism ; Identification and classification ; Life Sciences ; Mass Spectrometry ; Metabolic Engineering ; Metabolic Networks and Pathways - genetics ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Physiology ; Plant growth ; Properties ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; Pseudomonas aeruginosa - genetics ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scientific imaging ; Solvents ; Studies ; Subpopulations ; Surface active agents ; Surface-Active Agents - chemistry ; Surface-Active Agents - metabolism ; Surfactants ; Testing ; Trichloroethene ; Trichloroethylene</subject><ispartof>Applied microbiology and biotechnology, 2013-03, Vol.97 (5), p.1909-1921</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-943b626f4b9d4600f936ec011c0ec238f52c896263d8b0490b5bdd7b0a78a3aa3</citedby><cites>FETCH-LOGICAL-c543t-943b626f4b9d4600f936ec011c0ec238f52c896263d8b0490b5bdd7b0a78a3aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-012-4454-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-012-4454-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23053103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tavares, Luiz F. D.</creatorcontrib><creatorcontrib>Silva, Patrícia M.</creatorcontrib><creatorcontrib>Junqueira, Magno</creatorcontrib><creatorcontrib>Mariano, Danielly C. O.</creatorcontrib><creatorcontrib>Nogueira, Fábio C. S.</creatorcontrib><creatorcontrib>Domont, Gilberto B.</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Neves, Bianca C.</creatorcontrib><title>Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of chemical structures, including rhamnolipids, typically produced by
Pseudomonas
spp. and also reported within other bacterial genera. The present study is focused on
Burkholderia kururiensis
KP23
T
, a trichloroethylene (TCE)-degrading, N-fixing, and plant growth-promoting bacterium. Herein, we describe the production of rhamnolipids by
B
.
kururiensis
, and its characterization by LTQ-Orbitrap Hybrid Mass Spectrometry, a powerful tool that allowed efficient identification of molecular subpopulations, due to its high selectivity, mass accuracy, and resolving power. The population of rhamnolipids produced by
B
.
kururiensis
revealed molecular species commonly observed in
Pseudomonas
spp. and/or
Burkholderia
spp. In addition, this strain was used as a platform for expression of two
Pseudomonas aeruginosa
biosynthetic enzymes: RhlA, which directly utilizes β-hydroxydecanoyl-ACP intermediates in fatty acid synthesis to generate the HAA, and RhlB, the rhamnosyltransferase 1, which catalyzes the transfer of dTDP-L-rhamnose to β-hydroxy fatty acids in the biosynthesis of rhamnolipids. We show that rhamnolipid production by the engineered
B
.
kururiensis
was increased over 600 % when compared to the wild type. Structural analyses demonstrated a molecular population composed mainly of monorhamnolipids, as opposed to wild-type
B
.
kururiensis
and
P
.
aeruginosa
in which dirhamnolipids are predominant. We conclude that
B
.
kururiensis
is a promising biosurfactant-producing organism, with great potential for environmental and biotechnological applications due to its non-pathogenic characteristics and efficiency as a platform for metabolic engineering and production of tailor-made biosurfactants.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Bioengineering</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Burkholderia</subject><subject>Burkholderia - genetics</subject><subject>Burkholderia - metabolism</subject><subject>Cloning, Molecular</subject><subject>Engineering</subject><subject>Fatty acids</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Glycolipids - chemistry</subject><subject>Glycolipids - metabolism</subject><subject>Identification and classification</subject><subject>Life Sciences</subject><subject>Mass Spectrometry</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Properties</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Solvents</subject><subject>Studies</subject><subject>Subpopulations</subject><subject>Surface active agents</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - metabolism</subject><subject>Surfactants</subject><subject>Testing</subject><subject>Trichloroethene</subject><subject>Trichloroethylene</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkkuLFDEUhYMoTjv6A9xIgRtd1HjzqFRqOdP4GBgQfGwNqeRWd2aqkzapQttfb5oeHy2KZBHI_c7hnnAIeUzhjAK0LzIAa3gNlNVCNKLu7pAFFZzVIKm4SxZA26Zum06dkAc5X0MBlZT3yQnj0HAKfEE-LdcmGTth8t_M5GOo4lCltdmEOPqtd7napuhmi67qd9UXP7p62m2xMsFVGFY-IKYyu5jTzTqOrtiY6mZOc_IYss8Pyb3BjBkf3d6n5OOrlx-Wb-qrt68vl-dXtW0En-pO8F4yOYi-c0ICDB2XaIFSC2gZV0PDrOoKwZ3qQXTQN71zbQ-mVYYbw0_Js4Nv2fbzjHnSG58tjqMJGOesKaeNZIxR_n-UqVYpSSkt6NM_0Os4p1CC7CnZMcUY_0WtzIjahyFO5Uf3pvqc81ZSRZUo1NlfqHIcbryNAQdf3o8Ez48EhZnw67Qyc8768v27Y5YeWJtizgkHvU1-Y9JOU9D7quhDVXRpgN5XRXdF8-Q23Nxv0P1U_OhGAdgByGUUVph-S_9P1-8InMYp</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Tavares, Luiz F. D.</creator><creator>Silva, Patrícia M.</creator><creator>Junqueira, Magno</creator><creator>Mariano, Danielly C. O.</creator><creator>Nogueira, Fábio C. S.</creator><creator>Domont, Gilberto B.</creator><creator>Freire, Denise M. G.</creator><creator>Neves, Bianca C.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20130301</creationdate><title>Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis</title><author>Tavares, Luiz F. D. ; Silva, Patrícia M. ; Junqueira, Magno ; Mariano, Danielly C. O. ; Nogueira, Fábio C. S. ; Domont, Gilberto B. ; Freire, Denise M. G. ; Neves, Bianca C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-943b626f4b9d4600f936ec011c0ec238f52c896263d8b0490b5bdd7b0a78a3aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Bioengineering</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Burkholderia</topic><topic>Burkholderia - genetics</topic><topic>Burkholderia - metabolism</topic><topic>Cloning, Molecular</topic><topic>Engineering</topic><topic>Fatty acids</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Glycolipids - chemistry</topic><topic>Glycolipids - metabolism</topic><topic>Identification and classification</topic><topic>Life Sciences</topic><topic>Mass Spectrometry</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Properties</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Solvents</topic><topic>Studies</topic><topic>Subpopulations</topic><topic>Surface active agents</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - metabolism</topic><topic>Surfactants</topic><topic>Testing</topic><topic>Trichloroethene</topic><topic>Trichloroethylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavares, Luiz F. D.</creatorcontrib><creatorcontrib>Silva, Patrícia M.</creatorcontrib><creatorcontrib>Junqueira, Magno</creatorcontrib><creatorcontrib>Mariano, Danielly C. O.</creatorcontrib><creatorcontrib>Nogueira, Fábio C. S.</creatorcontrib><creatorcontrib>Domont, Gilberto B.</creatorcontrib><creatorcontrib>Freire, Denise M. G.</creatorcontrib><creatorcontrib>Neves, Bianca C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavares, Luiz F. D.</au><au>Silva, Patrícia M.</au><au>Junqueira, Magno</au><au>Mariano, Danielly C. O.</au><au>Nogueira, Fábio C. S.</au><au>Domont, Gilberto B.</au><au>Freire, Denise M. G.</au><au>Neves, Bianca C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>97</volume><issue>5</issue><spage>1909</spage><epage>1921</epage><pages>1909-1921</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of chemical structures, including rhamnolipids, typically produced by
Pseudomonas
spp. and also reported within other bacterial genera. The present study is focused on
Burkholderia kururiensis
KP23
T
, a trichloroethylene (TCE)-degrading, N-fixing, and plant growth-promoting bacterium. Herein, we describe the production of rhamnolipids by
B
.
kururiensis
, and its characterization by LTQ-Orbitrap Hybrid Mass Spectrometry, a powerful tool that allowed efficient identification of molecular subpopulations, due to its high selectivity, mass accuracy, and resolving power. The population of rhamnolipids produced by
B
.
kururiensis
revealed molecular species commonly observed in
Pseudomonas
spp. and/or
Burkholderia
spp. In addition, this strain was used as a platform for expression of two
Pseudomonas aeruginosa
biosynthetic enzymes: RhlA, which directly utilizes β-hydroxydecanoyl-ACP intermediates in fatty acid synthesis to generate the HAA, and RhlB, the rhamnosyltransferase 1, which catalyzes the transfer of dTDP-L-rhamnose to β-hydroxy fatty acids in the biosynthesis of rhamnolipids. We show that rhamnolipid production by the engineered
B
.
kururiensis
was increased over 600 % when compared to the wild type. Structural analyses demonstrated a molecular population composed mainly of monorhamnolipids, as opposed to wild-type
B
.
kururiensis
and
P
.
aeruginosa
in which dirhamnolipids are predominant. We conclude that
B
.
kururiensis
is a promising biosurfactant-producing organism, with great potential for environmental and biotechnological applications due to its non-pathogenic characteristics and efficiency as a platform for metabolic engineering and production of tailor-made biosurfactants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23053103</pmid><doi>10.1007/s00253-012-4454-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2013-03, Vol.97 (5), p.1909-1921 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315622213 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analysis Bacteria Bioengineering Biofilms Biomedical and Life Sciences Biosynthesis Biotechnological Products and Process Engineering Biotechnology Burkholderia Burkholderia - genetics Burkholderia - metabolism Cloning, Molecular Engineering Fatty acids Gene Expression Genes Glycolipids - chemistry Glycolipids - metabolism Identification and classification Life Sciences Mass Spectrometry Metabolic Engineering Metabolic Networks and Pathways - genetics Metabolism Microbial Genetics and Genomics Microbiology Microorganisms Physiology Plant growth Properties Pseudomonas aeruginosa Pseudomonas aeruginosa - enzymology Pseudomonas aeruginosa - genetics Recombinant Proteins - genetics Recombinant Proteins - metabolism Scientific imaging Solvents Studies Subpopulations Surface active agents Surface-Active Agents - chemistry Surface-Active Agents - metabolism Surfactants Testing Trichloroethene Trichloroethylene |
title | Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20rhamnolipids%20produced%20by%20wild-type%20and%20engineered%20Burkholderia%20kururiensis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tavares,%20Luiz%20F.%20D.&rft.date=2013-03-01&rft.volume=97&rft.issue=5&rft.spage=1909&rft.epage=1921&rft.pages=1909-1921&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-012-4454-9&rft_dat=%3Cgale_proqu%3EA337618184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286928223&rft_id=info:pmid/23053103&rft_galeid=A337618184&rfr_iscdi=true |