GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes
Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2013-02, Vol.17 (1), p.1-24 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Computational geosciences |
container_volume | 17 |
creator | Kulik, Dmitrii A. Wagner, Thomas Dmytrieva, Svitlana V. Kosakowski, Georg Hingerl, Ferdinand F. Chudnenko, Konstantin V. Berner, Urs R. |
description | Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (
http://gems.web.psi.ch
). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing. |
doi_str_mv | 10.1007/s10596-012-9310-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315619736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315619736</sourcerecordid><originalsourceid>FETCH-LOGICAL-p259t-7e5fa55e0e39959bc93776175ef33fa3fa6a77f217475b99d249ffa292a78d3c3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWKsfwFvAi5do_mw2xpuUWsWKh-p5SXcn222zmzXZ9fObWg8iDMww_OYxvIfQJaM3jFJ1GxmVOieUcaIFoyQ_QhMmlSAs0_o4zRmnJCHqFJ3FuKWUaiXYBI2L-StZgYPd4AOuwZcbaJvSONz6ClzT1bg35c7UcI8DfDURKmxc7UMzbFpsugongZV4wd3YQvg53EHowGGb9Eo_9i5dxKYdnRka36VVBfEcnVjjIlz89in6eJy_z57I8m3xPHtYkp5LPRAF0hopgYLQWup1qYVSOVMSrBDWpMqNUpYzlSm51rrimbbWcM2NuqtEKabo-qDbB_85QhyKtoklOGc68GMsmGAyZ8mJPKFX_9CtH0OXvisYzxXnWiuZKH6gYh-SNxD-ULTYJ1EckihSEsU-iSIX35w4fCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267229975</pqid></control><display><type>article</type><title>GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes</title><source>SpringerLink Journals</source><creator>Kulik, Dmitrii A. ; Wagner, Thomas ; Dmytrieva, Svitlana V. ; Kosakowski, Georg ; Hingerl, Ferdinand F. ; Chudnenko, Konstantin V. ; Berner, Urs R.</creator><creatorcontrib>Kulik, Dmitrii A. ; Wagner, Thomas ; Dmytrieva, Svitlana V. ; Kosakowski, Georg ; Hingerl, Ferdinand F. ; Chudnenko, Konstantin V. ; Berner, Urs R.</creatorcontrib><description>Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (
http://gems.web.psi.ch
). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-012-9310-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Chemical kinetics ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Mass transport ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Original Paper ; Soil Science & Conservation ; Speciation ; Thermodynamics</subject><ispartof>Computational geosciences, 2013-02, Vol.17 (1), p.1-24</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p259t-7e5fa55e0e39959bc93776175ef33fa3fa6a77f217475b99d249ffa292a78d3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-012-9310-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-012-9310-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kulik, Dmitrii A.</creatorcontrib><creatorcontrib>Wagner, Thomas</creatorcontrib><creatorcontrib>Dmytrieva, Svitlana V.</creatorcontrib><creatorcontrib>Kosakowski, Georg</creatorcontrib><creatorcontrib>Hingerl, Ferdinand F.</creatorcontrib><creatorcontrib>Chudnenko, Konstantin V.</creatorcontrib><creatorcontrib>Berner, Urs R.</creatorcontrib><title>GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (
http://gems.web.psi.ch
). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.</description><subject>Algorithms</subject><subject>Chemical kinetics</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mass transport</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Soil Science & Conservation</subject><subject>Speciation</subject><subject>Thermodynamics</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU9LAzEQxYMoWKsfwFvAi5do_mw2xpuUWsWKh-p5SXcn222zmzXZ9fObWg8iDMww_OYxvIfQJaM3jFJ1GxmVOieUcaIFoyQ_QhMmlSAs0_o4zRmnJCHqFJ3FuKWUaiXYBI2L-StZgYPd4AOuwZcbaJvSONz6ClzT1bg35c7UcI8DfDURKmxc7UMzbFpsugongZV4wd3YQvg53EHowGGb9Eo_9i5dxKYdnRka36VVBfEcnVjjIlz89in6eJy_z57I8m3xPHtYkp5LPRAF0hopgYLQWup1qYVSOVMSrBDWpMqNUpYzlSm51rrimbbWcM2NuqtEKabo-qDbB_85QhyKtoklOGc68GMsmGAyZ8mJPKFX_9CtH0OXvisYzxXnWiuZKH6gYh-SNxD-ULTYJ1EckihSEsU-iSIX35w4fCM</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kulik, Dmitrii A.</creator><creator>Wagner, Thomas</creator><creator>Dmytrieva, Svitlana V.</creator><creator>Kosakowski, Georg</creator><creator>Hingerl, Ferdinand F.</creator><creator>Chudnenko, Konstantin V.</creator><creator>Berner, Urs R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130201</creationdate><title>GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes</title><author>Kulik, Dmitrii A. ; Wagner, Thomas ; Dmytrieva, Svitlana V. ; Kosakowski, Georg ; Hingerl, Ferdinand F. ; Chudnenko, Konstantin V. ; Berner, Urs R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p259t-7e5fa55e0e39959bc93776175ef33fa3fa6a77f217475b99d249ffa292a78d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Chemical kinetics</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mass transport</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Soil Science & Conservation</topic><topic>Speciation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulik, Dmitrii A.</creatorcontrib><creatorcontrib>Wagner, Thomas</creatorcontrib><creatorcontrib>Dmytrieva, Svitlana V.</creatorcontrib><creatorcontrib>Kosakowski, Georg</creatorcontrib><creatorcontrib>Hingerl, Ferdinand F.</creatorcontrib><creatorcontrib>Chudnenko, Konstantin V.</creatorcontrib><creatorcontrib>Berner, Urs R.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulik, Dmitrii A.</au><au>Wagner, Thomas</au><au>Dmytrieva, Svitlana V.</au><au>Kosakowski, Georg</au><au>Hingerl, Ferdinand F.</au><au>Chudnenko, Konstantin V.</au><au>Berner, Urs R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (
http://gems.web.psi.ch
). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-012-9310-6</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2013-02, Vol.17 (1), p.1-24 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315619736 |
source | SpringerLink Journals |
subjects | Algorithms Chemical kinetics Computer simulation Earth and Environmental Science Earth Sciences Geochemistry Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mass transport Mathematical Modeling and Industrial Mathematics Mathematical models Original Paper Soil Science & Conservation Speciation Thermodynamics |
title | GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEM-Selektor%20geochemical%20modeling%20package:%20revised%20algorithm%20and%20GEMS3K%20numerical%20kernel%20for%20coupled%20simulation%20codes&rft.jtitle=Computational%20geosciences&rft.au=Kulik,%20Dmitrii%20A.&rft.date=2013-02-01&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-012-9310-6&rft_dat=%3Cproquest_sprin%3E1315619736%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267229975&rft_id=info:pmid/&rfr_iscdi=true |