Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them

Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007 ). However, transmission electron microscopy showed no surface chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2013-02, Vol.195 (2), p.131-140
Hauptverfasser: Kawai, Fusako, Kitajima, Sakihito, Oda, Kenji, Higasa, Takahiko, Charoenpanich, Jittima, Hu, Xiaoping, Mamoto, Rie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 2
container_start_page 131
container_title Archives of microbiology
container_volume 195
creator Kawai, Fusako
Kitajima, Sakihito
Oda, Kenji
Higasa, Takahiko
Charoenpanich, Jittima
Hu, Xiaoping
Mamoto, Rie
description Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007 ). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S . terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14 C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.
doi_str_mv 10.1007/s00203-012-0859-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315618069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283274064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f19c52a343977c6334952fde3ceab5a6e35dc4c043363c9da1d061939d0ca9483</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzoD_AiAS9eWpNU-iNHWfyCBRd2BW9NJqmeyZJ02qRnoW_-dNPOKiLI5lKk6qm3qngJecHZG85Y-zYzJhhUjIuKdbWq-COy4RLKrxXfHpMNAyaqTgGckfOcb1kBu657Ss4EiAbK25AfV9Evd25cPNXexEMscbR0KlmcD4vHEeneL6bkh5jCr0LARHfROszUjXQ-IJ0wucnrHGgc6PV0cOM-hjhqm0tZz1QnpHrnkc6R6pxdcF7PuLaGZ-TJoH3G5_dxS75-eH9z8am6_PLx88W7y8pIVs_VwJWphQYJqm1NWV6qWgwWwaDe1bpBqK2RhkmABoyymlvWcAXKMqOV7GBLXp90pxS_HzHPfXDZoPd6xHjMPQdeN7xjjXoYFR2IVrJGFvTVP-htPKaxHLJSoi478HU2P1EmxZwTDv2UXNBp6TnrVyf7k5N9MahfnSzbbMnLe-XjLqD90_HbugKIE5BLadxj-mv0f1V_Ag9UqYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282506118</pqid></control><display><type>article</type><title>Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kawai, Fusako ; Kitajima, Sakihito ; Oda, Kenji ; Higasa, Takahiko ; Charoenpanich, Jittima ; Hu, Xiaoping ; Mamoto, Rie</creator><creatorcontrib>Kawai, Fusako ; Kitajima, Sakihito ; Oda, Kenji ; Higasa, Takahiko ; Charoenpanich, Jittima ; Hu, Xiaoping ; Mamoto, Rie</creatorcontrib><description>Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007 ). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S . terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14 C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-012-0859-1</identifier><identifier>PMID: 23263333</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bacterial Proteins - metabolism ; Biochemistry ; Biodegradation ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Dehydrogenases ; Ecology ; Enzymes ; Life Sciences ; Mass spectrometry ; Membrane Proteins - metabolism ; Metabolism ; Microbial Ecology ; Microbiology ; Microorganisms ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Molecular weight ; Original Paper ; Periplasm - chemistry ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers ; Polymers - chemistry ; Polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Proteins ; Scanning electron microscopy ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Sphingomonadaceae - chemistry ; Sphingomonadaceae - ultrastructure ; Sphingopyxis macrogoltabida</subject><ispartof>Archives of microbiology, 2013-02, Vol.195 (2), p.131-140</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f19c52a343977c6334952fde3ceab5a6e35dc4c043363c9da1d061939d0ca9483</citedby><cites>FETCH-LOGICAL-c405t-f19c52a343977c6334952fde3ceab5a6e35dc4c043363c9da1d061939d0ca9483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-012-0859-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-012-0859-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23263333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Oda, Kenji</creatorcontrib><creatorcontrib>Higasa, Takahiko</creatorcontrib><creatorcontrib>Charoenpanich, Jittima</creatorcontrib><creatorcontrib>Hu, Xiaoping</creatorcontrib><creatorcontrib>Mamoto, Rie</creatorcontrib><title>Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007 ). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S . terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14 C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.</description><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Dehydrogenases</subject><subject>Ecology</subject><subject>Enzymes</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular weight</subject><subject>Original Paper</subject><subject>Periplasm - chemistry</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Proteins</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Sphingomonadaceae - chemistry</subject><subject>Sphingomonadaceae - ultrastructure</subject><subject>Sphingopyxis macrogoltabida</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2LFDEQhoMo7uzoD_AiAS9eWpNU-iNHWfyCBRd2BW9NJqmeyZJ02qRnoW_-dNPOKiLI5lKk6qm3qngJecHZG85Y-zYzJhhUjIuKdbWq-COy4RLKrxXfHpMNAyaqTgGckfOcb1kBu657Ss4EiAbK25AfV9Evd25cPNXexEMscbR0KlmcD4vHEeneL6bkh5jCr0LARHfROszUjXQ-IJ0wucnrHGgc6PV0cOM-hjhqm0tZz1QnpHrnkc6R6pxdcF7PuLaGZ-TJoH3G5_dxS75-eH9z8am6_PLx88W7y8pIVs_VwJWphQYJqm1NWV6qWgwWwaDe1bpBqK2RhkmABoyymlvWcAXKMqOV7GBLXp90pxS_HzHPfXDZoPd6xHjMPQdeN7xjjXoYFR2IVrJGFvTVP-htPKaxHLJSoi478HU2P1EmxZwTDv2UXNBp6TnrVyf7k5N9MahfnSzbbMnLe-XjLqD90_HbugKIE5BLadxj-mv0f1V_Ag9UqYE</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kawai, Fusako</creator><creator>Kitajima, Sakihito</creator><creator>Oda, Kenji</creator><creator>Higasa, Takahiko</creator><creator>Charoenpanich, Jittima</creator><creator>Hu, Xiaoping</creator><creator>Mamoto, Rie</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20130201</creationdate><title>Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them</title><author>Kawai, Fusako ; Kitajima, Sakihito ; Oda, Kenji ; Higasa, Takahiko ; Charoenpanich, Jittima ; Hu, Xiaoping ; Mamoto, Rie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f19c52a343977c6334952fde3ceab5a6e35dc4c043363c9da1d061939d0ca9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Dehydrogenases</topic><topic>Ecology</topic><topic>Enzymes</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular weight</topic><topic>Original Paper</topic><topic>Periplasm - chemistry</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Proteins</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Sphingomonadaceae - chemistry</topic><topic>Sphingomonadaceae - ultrastructure</topic><topic>Sphingopyxis macrogoltabida</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawai, Fusako</creatorcontrib><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Oda, Kenji</creatorcontrib><creatorcontrib>Higasa, Takahiko</creatorcontrib><creatorcontrib>Charoenpanich, Jittima</creatorcontrib><creatorcontrib>Hu, Xiaoping</creatorcontrib><creatorcontrib>Mamoto, Rie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawai, Fusako</au><au>Kitajima, Sakihito</au><au>Oda, Kenji</au><au>Higasa, Takahiko</au><au>Charoenpanich, Jittima</au><au>Hu, Xiaoping</au><au>Mamoto, Rie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>195</volume><issue>2</issue><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007 ). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S . terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14 C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23263333</pmid><doi>10.1007/s00203-012-0859-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2013-02, Vol.195 (2), p.131-140
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_1315618069
source MEDLINE; SpringerNature Journals
subjects Bacterial Proteins - metabolism
Biochemistry
Biodegradation
Biomedical and Life Sciences
Biotechnology
Cell Biology
Dehydrogenases
Ecology
Enzymes
Life Sciences
Mass spectrometry
Membrane Proteins - metabolism
Metabolism
Microbial Ecology
Microbiology
Microorganisms
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Molecular weight
Original Paper
Periplasm - chemistry
Polyethylene glycol
Polyethylene Glycols - chemistry
Polymers
Polymers - chemistry
Polyvinyl alcohol
Polyvinyl Alcohol - chemistry
Proteins
Scanning electron microscopy
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Sphingomonadaceae - chemistry
Sphingomonadaceae - ultrastructure
Sphingopyxis macrogoltabida
title Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyvinyl%20alcohol%20and%20polyethylene%20glycol%20form%20polymer%20bodies%20in%20the%20periplasm%20of%20Sphingomonads%20that%20are%20able%20to%20assimilate%20them&rft.jtitle=Archives%20of%20microbiology&rft.au=Kawai,%20Fusako&rft.date=2013-02-01&rft.volume=195&rft.issue=2&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-012-0859-1&rft_dat=%3Cproquest_cross%3E1283274064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282506118&rft_id=info:pmid/23263333&rfr_iscdi=true