p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation
Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of...
Gespeichert in:
Veröffentlicht in: | Oncogene 2013-02, Vol.32 (8), p.968-975 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 8 |
container_start_page | 968 |
container_title | Oncogene |
container_volume | 32 |
creator | Rieckmann, T Kriegs, M Nitsch, L Hoffer, K Rohaly, G Kocher, S Petersen, C Dikomey, E Dornreiter, I Dahm-Daphi, J |
description | Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of driving oncogenic transformation. Regulation of HR by wild-type p53 (wtp53) should prevent these genomic rearrangements. Mutation of p53 is a frequent event during carcinogenesis. In particular, dominant-negative mutants inhibiting wtp53 expressed from the unperturbed allel can drive oncogenic transformation by disrupting the p53-dependent anticancer barrier. Here, we asked whether the hot spot mutants R175H and R273H relax HR control in p53-proficient cells. Utilizing an
I-Sce
I-based reporter assay, we observed a moderate (1.5 × ) stimulation of HR upon expression of the mutant proteins in p53-proficient CV-1, but not in p53-deficient H1299 cells. Importantly, the stimulatory effect was exactly paralleled by an increase in the number of HR competent S- and G2-phase cells, which can well explain the enhanced recombination frequencies. Furthermore, the impact on HR exerted by the transactivation domain double-mutant L22Q/W23S and mutant R273P, both of which were reported to regulate HR independently of G1-arrest execution, is also exactly mirrored by cell-cycle behavior. These results are in contrast to previous concepts stating that the transactivation-independent impact of p53 on HR is a general phenomenon valid for replication-associated and also for directly induced double-strand break. Our data strongly suggest that the latter is largely mediated by cell-cycle regulation, a classical transactivation-dependent function of p53. |
doi_str_mv | 10.1038/onc.2012.123 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315617857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A321335764</galeid><sourcerecordid>A321335764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-7b6540ff408d320adbb8cfb206de51e5d40b8bc04094c5a1d30cc101c63e3a163</originalsourceid><addsrcrecordid>eNp9kklvFDEQhS0EIkPgxhm1xIVDPJS3Xo5RBGGkSByAs-WleqaTbnuwuw_597g1YVWEfLBkf_X8qvwIec1gy0C072NwWw6MbxkXT8iGyaamSnXyKdlAp4B2XPAz8iLnWwBoOuDPyRnnspWSiw25OypRTdEvo5kxV4c4xTHu45KrhC5OdghmHmKozFzt6BeHOzoEvzj0lY-LHZHmOZngK5vQ3OVqPqS47A-Vw3Gk7t6NWHT2q3gReUme9WbM-OphPyffPn74evWJ3ny-3l1d3lCnuJhpY2sloe8ltF5wMN7a1vWWQ-1RMVRegm2tAwmddMowL8A5BszVAoVhtTgn7066xxS_L5hnPQ15dWQCls40E0zVrGlVU9C3_6C3cUmhuNO8lkxxxTr1P4rxMtGuAdX-pvZmRD2EPpbRuPVpfSk4E0I1tSzU9hGqLI_T4GLAfijnfxVcnApcijkn7PUxDZNJ95qBXhOgSwL0moBiRhT8zYPXxU7of8E_v7wA9ATkchX2mP5o5jHBHxYNuI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290297058</pqid></control><display><type>article</type><title>p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Rieckmann, T ; Kriegs, M ; Nitsch, L ; Hoffer, K ; Rohaly, G ; Kocher, S ; Petersen, C ; Dikomey, E ; Dornreiter, I ; Dahm-Daphi, J</creator><creatorcontrib>Rieckmann, T ; Kriegs, M ; Nitsch, L ; Hoffer, K ; Rohaly, G ; Kocher, S ; Petersen, C ; Dikomey, E ; Dornreiter, I ; Dahm-Daphi, J</creatorcontrib><description>Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of driving oncogenic transformation. Regulation of HR by wild-type p53 (wtp53) should prevent these genomic rearrangements. Mutation of p53 is a frequent event during carcinogenesis. In particular, dominant-negative mutants inhibiting wtp53 expressed from the unperturbed allel can drive oncogenic transformation by disrupting the p53-dependent anticancer barrier. Here, we asked whether the hot spot mutants R175H and R273H relax HR control in p53-proficient cells. Utilizing an
I-Sce
I-based reporter assay, we observed a moderate (1.5 × ) stimulation of HR upon expression of the mutant proteins in p53-proficient CV-1, but not in p53-deficient H1299 cells. Importantly, the stimulatory effect was exactly paralleled by an increase in the number of HR competent S- and G2-phase cells, which can well explain the enhanced recombination frequencies. Furthermore, the impact on HR exerted by the transactivation domain double-mutant L22Q/W23S and mutant R273P, both of which were reported to regulate HR independently of G1-arrest execution, is also exactly mirrored by cell-cycle behavior. These results are in contrast to previous concepts stating that the transactivation-independent impact of p53 on HR is a general phenomenon valid for replication-associated and also for directly induced double-strand break. Our data strongly suggest that the latter is largely mediated by cell-cycle regulation, a classical transactivation-dependent function of p53.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2012.123</identifier><identifier>PMID: 22484423</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/1427/2190 ; 631/80/641 ; 692/420/755 ; Analysis ; Animals ; Apoptosis ; Carcinogenesis ; Cell Biology ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Line ; Cell Line, Tumor ; Cercopithecus aethiops ; Deoxyribonucleases, Type II Site-Specific - genetics ; DNA Breaks, Double-Stranded ; DNA damage ; G2 Phase - genetics ; Gene expression ; Genetic aspects ; Genetic transformation ; Genomic instability ; Heterozygosity ; Homologous Recombination ; Human Genetics ; Humans ; Internal Medicine ; Loss of heterozygosity ; Medicine ; Medicine & Public Health ; Mutants ; Mutation ; Oncology ; original-article ; p53 Protein ; Proteins ; S Phase - genetics ; Transfection ; Translocation ; Tumor proteins ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Oncogene, 2013-02, Vol.32 (8), p.968-975</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 21, 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-7b6540ff408d320adbb8cfb206de51e5d40b8bc04094c5a1d30cc101c63e3a163</citedby><cites>FETCH-LOGICAL-c523t-7b6540ff408d320adbb8cfb206de51e5d40b8bc04094c5a1d30cc101c63e3a163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2012.123$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2012.123$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22484423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rieckmann, T</creatorcontrib><creatorcontrib>Kriegs, M</creatorcontrib><creatorcontrib>Nitsch, L</creatorcontrib><creatorcontrib>Hoffer, K</creatorcontrib><creatorcontrib>Rohaly, G</creatorcontrib><creatorcontrib>Kocher, S</creatorcontrib><creatorcontrib>Petersen, C</creatorcontrib><creatorcontrib>Dikomey, E</creatorcontrib><creatorcontrib>Dornreiter, I</creatorcontrib><creatorcontrib>Dahm-Daphi, J</creatorcontrib><title>p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of driving oncogenic transformation. Regulation of HR by wild-type p53 (wtp53) should prevent these genomic rearrangements. Mutation of p53 is a frequent event during carcinogenesis. In particular, dominant-negative mutants inhibiting wtp53 expressed from the unperturbed allel can drive oncogenic transformation by disrupting the p53-dependent anticancer barrier. Here, we asked whether the hot spot mutants R175H and R273H relax HR control in p53-proficient cells. Utilizing an
I-Sce
I-based reporter assay, we observed a moderate (1.5 × ) stimulation of HR upon expression of the mutant proteins in p53-proficient CV-1, but not in p53-deficient H1299 cells. Importantly, the stimulatory effect was exactly paralleled by an increase in the number of HR competent S- and G2-phase cells, which can well explain the enhanced recombination frequencies. Furthermore, the impact on HR exerted by the transactivation domain double-mutant L22Q/W23S and mutant R273P, both of which were reported to regulate HR independently of G1-arrest execution, is also exactly mirrored by cell-cycle behavior. These results are in contrast to previous concepts stating that the transactivation-independent impact of p53 on HR is a general phenomenon valid for replication-associated and also for directly induced double-strand break. Our data strongly suggest that the latter is largely mediated by cell-cycle regulation, a classical transactivation-dependent function of p53.</description><subject>631/337/1427/2190</subject><subject>631/80/641</subject><subject>692/420/755</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cercopithecus aethiops</subject><subject>Deoxyribonucleases, Type II Site-Specific - genetics</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>G2 Phase - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic transformation</subject><subject>Genomic instability</subject><subject>Heterozygosity</subject><subject>Homologous Recombination</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Loss of heterozygosity</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oncology</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Proteins</subject><subject>S Phase - genetics</subject><subject>Transfection</subject><subject>Translocation</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kklvFDEQhS0EIkPgxhm1xIVDPJS3Xo5RBGGkSByAs-WleqaTbnuwuw_597g1YVWEfLBkf_X8qvwIec1gy0C072NwWw6MbxkXT8iGyaamSnXyKdlAp4B2XPAz8iLnWwBoOuDPyRnnspWSiw25OypRTdEvo5kxV4c4xTHu45KrhC5OdghmHmKozFzt6BeHOzoEvzj0lY-LHZHmOZngK5vQ3OVqPqS47A-Vw3Gk7t6NWHT2q3gReUme9WbM-OphPyffPn74evWJ3ny-3l1d3lCnuJhpY2sloe8ltF5wMN7a1vWWQ-1RMVRegm2tAwmddMowL8A5BszVAoVhtTgn7066xxS_L5hnPQ15dWQCls40E0zVrGlVU9C3_6C3cUmhuNO8lkxxxTr1P4rxMtGuAdX-pvZmRD2EPpbRuPVpfSk4E0I1tSzU9hGqLI_T4GLAfijnfxVcnApcijkn7PUxDZNJ95qBXhOgSwL0moBiRhT8zYPXxU7of8E_v7wA9ATkchX2mP5o5jHBHxYNuI8</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Rieckmann, T</creator><creator>Kriegs, M</creator><creator>Nitsch, L</creator><creator>Hoffer, K</creator><creator>Rohaly, G</creator><creator>Kocher, S</creator><creator>Petersen, C</creator><creator>Dikomey, E</creator><creator>Dornreiter, I</creator><creator>Dahm-Daphi, J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20130221</creationdate><title>p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation</title><author>Rieckmann, T ; Kriegs, M ; Nitsch, L ; Hoffer, K ; Rohaly, G ; Kocher, S ; Petersen, C ; Dikomey, E ; Dornreiter, I ; Dahm-Daphi, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-7b6540ff408d320adbb8cfb206de51e5d40b8bc04094c5a1d30cc101c63e3a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337/1427/2190</topic><topic>631/80/641</topic><topic>692/420/755</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cercopithecus aethiops</topic><topic>Deoxyribonucleases, Type II Site-Specific - genetics</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>G2 Phase - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic transformation</topic><topic>Genomic instability</topic><topic>Heterozygosity</topic><topic>Homologous Recombination</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Loss of heterozygosity</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oncology</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Proteins</topic><topic>S Phase - genetics</topic><topic>Transfection</topic><topic>Translocation</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieckmann, T</creatorcontrib><creatorcontrib>Kriegs, M</creatorcontrib><creatorcontrib>Nitsch, L</creatorcontrib><creatorcontrib>Hoffer, K</creatorcontrib><creatorcontrib>Rohaly, G</creatorcontrib><creatorcontrib>Kocher, S</creatorcontrib><creatorcontrib>Petersen, C</creatorcontrib><creatorcontrib>Dikomey, E</creatorcontrib><creatorcontrib>Dornreiter, I</creatorcontrib><creatorcontrib>Dahm-Daphi, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieckmann, T</au><au>Kriegs, M</au><au>Nitsch, L</au><au>Hoffer, K</au><au>Rohaly, G</au><au>Kocher, S</au><au>Petersen, C</au><au>Dikomey, E</au><au>Dornreiter, I</au><au>Dahm-Daphi, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2013-02-21</date><risdate>2013</risdate><volume>32</volume><issue>8</issue><spage>968</spage><epage>975</epage><pages>968-975</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Inhibition of homologous recombination (HR) is believed to be a transactivation-independent function of p53 that protects from genetic instability. Misrepair by HR can lead to genetic alterations such as translocations, duplications, insertions and loss of heterozygosity, which all bear the risk of driving oncogenic transformation. Regulation of HR by wild-type p53 (wtp53) should prevent these genomic rearrangements. Mutation of p53 is a frequent event during carcinogenesis. In particular, dominant-negative mutants inhibiting wtp53 expressed from the unperturbed allel can drive oncogenic transformation by disrupting the p53-dependent anticancer barrier. Here, we asked whether the hot spot mutants R175H and R273H relax HR control in p53-proficient cells. Utilizing an
I-Sce
I-based reporter assay, we observed a moderate (1.5 × ) stimulation of HR upon expression of the mutant proteins in p53-proficient CV-1, but not in p53-deficient H1299 cells. Importantly, the stimulatory effect was exactly paralleled by an increase in the number of HR competent S- and G2-phase cells, which can well explain the enhanced recombination frequencies. Furthermore, the impact on HR exerted by the transactivation domain double-mutant L22Q/W23S and mutant R273P, both of which were reported to regulate HR independently of G1-arrest execution, is also exactly mirrored by cell-cycle behavior. These results are in contrast to previous concepts stating that the transactivation-independent impact of p53 on HR is a general phenomenon valid for replication-associated and also for directly induced double-strand break. Our data strongly suggest that the latter is largely mediated by cell-cycle regulation, a classical transactivation-dependent function of p53.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22484423</pmid><doi>10.1038/onc.2012.123</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2013-02, Vol.32 (8), p.968-975 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315617857 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/337/1427/2190 631/80/641 692/420/755 Analysis Animals Apoptosis Carcinogenesis Cell Biology Cell cycle Cell Cycle Checkpoints - genetics Cell Line Cell Line, Tumor Cercopithecus aethiops Deoxyribonucleases, Type II Site-Specific - genetics DNA Breaks, Double-Stranded DNA damage G2 Phase - genetics Gene expression Genetic aspects Genetic transformation Genomic instability Heterozygosity Homologous Recombination Human Genetics Humans Internal Medicine Loss of heterozygosity Medicine Medicine & Public Health Mutants Mutation Oncology original-article p53 Protein Proteins S Phase - genetics Transfection Translocation Tumor proteins Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
title | p53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p53%20modulates%20homologous%20recombination%20at%20I-SceI-induced%20double-strand%20breaks%20through%20cell-cycle%20regulation&rft.jtitle=Oncogene&rft.au=Rieckmann,%20T&rft.date=2013-02-21&rft.volume=32&rft.issue=8&rft.spage=968&rft.epage=975&rft.pages=968-975&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2012.123&rft_dat=%3Cgale_proqu%3EA321335764%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290297058&rft_id=info:pmid/22484423&rft_galeid=A321335764&rfr_iscdi=true |