The way out: what we know and do not know about herpesvirus nuclear egress

Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular microbiology 2013-02, Vol.15 (2), p.170-178
Hauptverfasser: Mettenleiter, Thomas C., Müller, Frederik, Granzow, Harald, Klupp, Barbara G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 2
container_start_page 170
container_title Cellular microbiology
container_volume 15
creator Mettenleiter, Thomas C.
Müller, Frederik
Granzow, Harald
Klupp, Barbara G.
description Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.
doi_str_mv 10.1111/cmi.12044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315609100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866147581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</originalsourceid><addsrcrecordid>eNqN0U1PwyAYB3BiNG5OD34BQ-JFD914oIXWm1l8mZnxMs8NpdR1dmVCa7NvL9rpwcRELrz98g88D0KnQMbgx0StyzFQEoZ7aAghp0EUU7r_s4ZwgI6cWxECXAAcogFlJBKCwRA9LJYad3KLTdtc4W4pG9xp_FqbDss6x7nBtWl2-8wbvNR2o917aVuH61ZVWlqsX6x27hgdFLJy-mQ3j9Dz7c1ieh_Mn-5m0-t5oEIKYZBRylQWF_5ZRLI8iySNeZSxJC5CDlwpyQsBlMcA_rIouGbgz0HQhAmICRuhiz53Y81bq12TrkundFXJWpvWpcAg4iQB8g9KBfO1ionw9PwXXZnW1v4jXvEkSgjh1KvLXilrnLO6SDe2XEu7TYGkn71IfS_Sr154e7ZLbLO1zn_kd_E9mPSgKyu9_TspnT7O-sgPfC2PTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269590062</pqid></control><display><type>article</type><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</creator><creatorcontrib>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</creatorcontrib><description>Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.12044</identifier><identifier>PMID: 23057731</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Biological Transport ; Budding ; Capsid Proteins - physiology ; Capsids ; Cellular biology ; Conserved sequence ; Cytoplasmic Vesicles - metabolism ; Cytosol ; Cytosol - metabolism ; Cytosol - virology ; Drosophila ; Envelopes ; Epithelial Cells - metabolism ; Epithelial Cells - ultrastructure ; Epithelial Cells - virology ; Herpes simplex virus ; Herpesviridae - physiology ; Herpesviridae - ultrastructure ; Herpesviridae Infections - virology ; Herpesvirus ; Host-Pathogen Interactions ; Humans ; Kinases ; Membrane Fusion ; Membrane proteins ; Nuclear Envelope - metabolism ; Nuclear Envelope - virology ; Nuclear membranes ; Nuclear transport ; Nuclei ; Proteins ; Ribonucleoproteins ; Vesicles ; Virion - physiology ; Virions ; Virus Release - physiology</subject><ispartof>Cellular microbiology, 2013-02, Vol.15 (2), p.170-178</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</citedby><cites>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.12044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.12044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23057731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mettenleiter, Thomas C.</creatorcontrib><creatorcontrib>Müller, Frederik</creatorcontrib><creatorcontrib>Granzow, Harald</creatorcontrib><creatorcontrib>Klupp, Barbara G.</creatorcontrib><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><title>Cellular microbiology</title><addtitle>Cell Microbiol</addtitle><description>Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</description><subject>Biological Transport</subject><subject>Budding</subject><subject>Capsid Proteins - physiology</subject><subject>Capsids</subject><subject>Cellular biology</subject><subject>Conserved sequence</subject><subject>Cytoplasmic Vesicles - metabolism</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - virology</subject><subject>Drosophila</subject><subject>Envelopes</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - ultrastructure</subject><subject>Epithelial Cells - virology</subject><subject>Herpes simplex virus</subject><subject>Herpesviridae - physiology</subject><subject>Herpesviridae - ultrastructure</subject><subject>Herpesviridae Infections - virology</subject><subject>Herpesvirus</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Kinases</subject><subject>Membrane Fusion</subject><subject>Membrane proteins</subject><subject>Nuclear Envelope - metabolism</subject><subject>Nuclear Envelope - virology</subject><subject>Nuclear membranes</subject><subject>Nuclear transport</subject><subject>Nuclei</subject><subject>Proteins</subject><subject>Ribonucleoproteins</subject><subject>Vesicles</subject><subject>Virion - physiology</subject><subject>Virions</subject><subject>Virus Release - physiology</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1PwyAYB3BiNG5OD34BQ-JFD914oIXWm1l8mZnxMs8NpdR1dmVCa7NvL9rpwcRELrz98g88D0KnQMbgx0StyzFQEoZ7aAghp0EUU7r_s4ZwgI6cWxECXAAcogFlJBKCwRA9LJYad3KLTdtc4W4pG9xp_FqbDss6x7nBtWl2-8wbvNR2o917aVuH61ZVWlqsX6x27hgdFLJy-mQ3j9Dz7c1ieh_Mn-5m0-t5oEIKYZBRylQWF_5ZRLI8iySNeZSxJC5CDlwpyQsBlMcA_rIouGbgz0HQhAmICRuhiz53Y81bq12TrkundFXJWpvWpcAg4iQB8g9KBfO1ionw9PwXXZnW1v4jXvEkSgjh1KvLXilrnLO6SDe2XEu7TYGkn71IfS_Sr154e7ZLbLO1zn_kd_E9mPSgKyu9_TspnT7O-sgPfC2PTw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Mettenleiter, Thomas C.</creator><creator>Müller, Frederik</creator><creator>Granzow, Harald</creator><creator>Klupp, Barbara G.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><author>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Transport</topic><topic>Budding</topic><topic>Capsid Proteins - physiology</topic><topic>Capsids</topic><topic>Cellular biology</topic><topic>Conserved sequence</topic><topic>Cytoplasmic Vesicles - metabolism</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - virology</topic><topic>Drosophila</topic><topic>Envelopes</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - ultrastructure</topic><topic>Epithelial Cells - virology</topic><topic>Herpes simplex virus</topic><topic>Herpesviridae - physiology</topic><topic>Herpesviridae - ultrastructure</topic><topic>Herpesviridae Infections - virology</topic><topic>Herpesvirus</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Kinases</topic><topic>Membrane Fusion</topic><topic>Membrane proteins</topic><topic>Nuclear Envelope - metabolism</topic><topic>Nuclear Envelope - virology</topic><topic>Nuclear membranes</topic><topic>Nuclear transport</topic><topic>Nuclei</topic><topic>Proteins</topic><topic>Ribonucleoproteins</topic><topic>Vesicles</topic><topic>Virion - physiology</topic><topic>Virions</topic><topic>Virus Release - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mettenleiter, Thomas C.</creatorcontrib><creatorcontrib>Müller, Frederik</creatorcontrib><creatorcontrib>Granzow, Harald</creatorcontrib><creatorcontrib>Klupp, Barbara G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mettenleiter, Thomas C.</au><au>Müller, Frederik</au><au>Granzow, Harald</au><au>Klupp, Barbara G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The way out: what we know and do not know about herpesvirus nuclear egress</atitle><jtitle>Cellular microbiology</jtitle><addtitle>Cell Microbiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>15</volume><issue>2</issue><spage>170</spage><epage>178</epage><pages>170-178</pages><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>23057731</pmid><doi>10.1111/cmi.12044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-5814
ispartof Cellular microbiology, 2013-02, Vol.15 (2), p.170-178
issn 1462-5814
1462-5822
language eng
recordid cdi_proquest_miscellaneous_1315609100
source Wiley-Blackwell Journals; MEDLINE; Wiley Free Archive; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Biological Transport
Budding
Capsid Proteins - physiology
Capsids
Cellular biology
Conserved sequence
Cytoplasmic Vesicles - metabolism
Cytosol
Cytosol - metabolism
Cytosol - virology
Drosophila
Envelopes
Epithelial Cells - metabolism
Epithelial Cells - ultrastructure
Epithelial Cells - virology
Herpes simplex virus
Herpesviridae - physiology
Herpesviridae - ultrastructure
Herpesviridae Infections - virology
Herpesvirus
Host-Pathogen Interactions
Humans
Kinases
Membrane Fusion
Membrane proteins
Nuclear Envelope - metabolism
Nuclear Envelope - virology
Nuclear membranes
Nuclear transport
Nuclei
Proteins
Ribonucleoproteins
Vesicles
Virion - physiology
Virions
Virus Release - physiology
title The way out: what we know and do not know about herpesvirus nuclear egress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20way%20out:%20what%20we%20know%20and%20do%20not%20know%20about%20herpesvirus%20nuclear%20egress&rft.jtitle=Cellular%20microbiology&rft.au=Mettenleiter,%20Thomas%20C.&rft.date=2013-02&rft.volume=15&rft.issue=2&rft.spage=170&rft.epage=178&rft.pages=170-178&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.12044&rft_dat=%3Cproquest_cross%3E2866147581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269590062&rft_id=info:pmid/23057731&rfr_iscdi=true