The way out: what we know and do not know about herpesvirus nuclear egress
Summary Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuc...
Gespeichert in:
Veröffentlicht in: | Cellular microbiology 2013-02, Vol.15 (2), p.170-178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 2 |
container_start_page | 170 |
container_title | Cellular microbiology |
container_volume | 15 |
creator | Mettenleiter, Thomas C. Müller, Frederik Granzow, Harald Klupp, Barbara G. |
description | Summary
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol. |
doi_str_mv | 10.1111/cmi.12044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315609100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866147581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</originalsourceid><addsrcrecordid>eNqN0U1PwyAYB3BiNG5OD34BQ-JFD914oIXWm1l8mZnxMs8NpdR1dmVCa7NvL9rpwcRELrz98g88D0KnQMbgx0StyzFQEoZ7aAghp0EUU7r_s4ZwgI6cWxECXAAcogFlJBKCwRA9LJYad3KLTdtc4W4pG9xp_FqbDss6x7nBtWl2-8wbvNR2o917aVuH61ZVWlqsX6x27hgdFLJy-mQ3j9Dz7c1ieh_Mn-5m0-t5oEIKYZBRylQWF_5ZRLI8iySNeZSxJC5CDlwpyQsBlMcA_rIouGbgz0HQhAmICRuhiz53Y81bq12TrkundFXJWpvWpcAg4iQB8g9KBfO1ionw9PwXXZnW1v4jXvEkSgjh1KvLXilrnLO6SDe2XEu7TYGkn71IfS_Sr154e7ZLbLO1zn_kd_E9mPSgKyu9_TspnT7O-sgPfC2PTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269590062</pqid></control><display><type>article</type><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</creator><creatorcontrib>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</creatorcontrib><description>Summary
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.12044</identifier><identifier>PMID: 23057731</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Biological Transport ; Budding ; Capsid Proteins - physiology ; Capsids ; Cellular biology ; Conserved sequence ; Cytoplasmic Vesicles - metabolism ; Cytosol ; Cytosol - metabolism ; Cytosol - virology ; Drosophila ; Envelopes ; Epithelial Cells - metabolism ; Epithelial Cells - ultrastructure ; Epithelial Cells - virology ; Herpes simplex virus ; Herpesviridae - physiology ; Herpesviridae - ultrastructure ; Herpesviridae Infections - virology ; Herpesvirus ; Host-Pathogen Interactions ; Humans ; Kinases ; Membrane Fusion ; Membrane proteins ; Nuclear Envelope - metabolism ; Nuclear Envelope - virology ; Nuclear membranes ; Nuclear transport ; Nuclei ; Proteins ; Ribonucleoproteins ; Vesicles ; Virion - physiology ; Virions ; Virus Release - physiology</subject><ispartof>Cellular microbiology, 2013-02, Vol.15 (2), p.170-178</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</citedby><cites>FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.12044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.12044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23057731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mettenleiter, Thomas C.</creatorcontrib><creatorcontrib>Müller, Frederik</creatorcontrib><creatorcontrib>Granzow, Harald</creatorcontrib><creatorcontrib>Klupp, Barbara G.</creatorcontrib><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><title>Cellular microbiology</title><addtitle>Cell Microbiol</addtitle><description>Summary
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</description><subject>Biological Transport</subject><subject>Budding</subject><subject>Capsid Proteins - physiology</subject><subject>Capsids</subject><subject>Cellular biology</subject><subject>Conserved sequence</subject><subject>Cytoplasmic Vesicles - metabolism</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - virology</subject><subject>Drosophila</subject><subject>Envelopes</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - ultrastructure</subject><subject>Epithelial Cells - virology</subject><subject>Herpes simplex virus</subject><subject>Herpesviridae - physiology</subject><subject>Herpesviridae - ultrastructure</subject><subject>Herpesviridae Infections - virology</subject><subject>Herpesvirus</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Kinases</subject><subject>Membrane Fusion</subject><subject>Membrane proteins</subject><subject>Nuclear Envelope - metabolism</subject><subject>Nuclear Envelope - virology</subject><subject>Nuclear membranes</subject><subject>Nuclear transport</subject><subject>Nuclei</subject><subject>Proteins</subject><subject>Ribonucleoproteins</subject><subject>Vesicles</subject><subject>Virion - physiology</subject><subject>Virions</subject><subject>Virus Release - physiology</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1PwyAYB3BiNG5OD34BQ-JFD914oIXWm1l8mZnxMs8NpdR1dmVCa7NvL9rpwcRELrz98g88D0KnQMbgx0StyzFQEoZ7aAghp0EUU7r_s4ZwgI6cWxECXAAcogFlJBKCwRA9LJYad3KLTdtc4W4pG9xp_FqbDss6x7nBtWl2-8wbvNR2o917aVuH61ZVWlqsX6x27hgdFLJy-mQ3j9Dz7c1ieh_Mn-5m0-t5oEIKYZBRylQWF_5ZRLI8iySNeZSxJC5CDlwpyQsBlMcA_rIouGbgz0HQhAmICRuhiz53Y81bq12TrkundFXJWpvWpcAg4iQB8g9KBfO1ionw9PwXXZnW1v4jXvEkSgjh1KvLXilrnLO6SDe2XEu7TYGkn71IfS_Sr154e7ZLbLO1zn_kd_E9mPSgKyu9_TspnT7O-sgPfC2PTw</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Mettenleiter, Thomas C.</creator><creator>Müller, Frederik</creator><creator>Granzow, Harald</creator><creator>Klupp, Barbara G.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>The way out: what we know and do not know about herpesvirus nuclear egress</title><author>Mettenleiter, Thomas C. ; Müller, Frederik ; Granzow, Harald ; Klupp, Barbara G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4214-b223cb8f8140a3db5a2865b398f4616cca6f7126811db5ff6e316161729371803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Transport</topic><topic>Budding</topic><topic>Capsid Proteins - physiology</topic><topic>Capsids</topic><topic>Cellular biology</topic><topic>Conserved sequence</topic><topic>Cytoplasmic Vesicles - metabolism</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - virology</topic><topic>Drosophila</topic><topic>Envelopes</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - ultrastructure</topic><topic>Epithelial Cells - virology</topic><topic>Herpes simplex virus</topic><topic>Herpesviridae - physiology</topic><topic>Herpesviridae - ultrastructure</topic><topic>Herpesviridae Infections - virology</topic><topic>Herpesvirus</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Kinases</topic><topic>Membrane Fusion</topic><topic>Membrane proteins</topic><topic>Nuclear Envelope - metabolism</topic><topic>Nuclear Envelope - virology</topic><topic>Nuclear membranes</topic><topic>Nuclear transport</topic><topic>Nuclei</topic><topic>Proteins</topic><topic>Ribonucleoproteins</topic><topic>Vesicles</topic><topic>Virion - physiology</topic><topic>Virions</topic><topic>Virus Release - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mettenleiter, Thomas C.</creatorcontrib><creatorcontrib>Müller, Frederik</creatorcontrib><creatorcontrib>Granzow, Harald</creatorcontrib><creatorcontrib>Klupp, Barbara G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mettenleiter, Thomas C.</au><au>Müller, Frederik</au><au>Granzow, Harald</au><au>Klupp, Barbara G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The way out: what we know and do not know about herpesvirus nuclear egress</atitle><jtitle>Cellular microbiology</jtitle><addtitle>Cell Microbiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>15</volume><issue>2</issue><spage>170</spage><epage>178</epage><pages>170-178</pages><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>Summary
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail‐anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)‐mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>23057731</pmid><doi>10.1111/cmi.12044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-5814 |
ispartof | Cellular microbiology, 2013-02, Vol.15 (2), p.170-178 |
issn | 1462-5814 1462-5822 |
language | eng |
recordid | cdi_proquest_miscellaneous_1315609100 |
source | Wiley-Blackwell Journals; MEDLINE; Wiley Free Archive; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Biological Transport Budding Capsid Proteins - physiology Capsids Cellular biology Conserved sequence Cytoplasmic Vesicles - metabolism Cytosol Cytosol - metabolism Cytosol - virology Drosophila Envelopes Epithelial Cells - metabolism Epithelial Cells - ultrastructure Epithelial Cells - virology Herpes simplex virus Herpesviridae - physiology Herpesviridae - ultrastructure Herpesviridae Infections - virology Herpesvirus Host-Pathogen Interactions Humans Kinases Membrane Fusion Membrane proteins Nuclear Envelope - metabolism Nuclear Envelope - virology Nuclear membranes Nuclear transport Nuclei Proteins Ribonucleoproteins Vesicles Virion - physiology Virions Virus Release - physiology |
title | The way out: what we know and do not know about herpesvirus nuclear egress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20way%20out:%20what%20we%20know%20and%20do%20not%20know%20about%20herpesvirus%20nuclear%20egress&rft.jtitle=Cellular%20microbiology&rft.au=Mettenleiter,%20Thomas%20C.&rft.date=2013-02&rft.volume=15&rft.issue=2&rft.spage=170&rft.epage=178&rft.pages=170-178&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.12044&rft_dat=%3Cproquest_cross%3E2866147581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269590062&rft_id=info:pmid/23057731&rfr_iscdi=true |