Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications

One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667
Hauptverfasser: Zahorian, Jaime, Hochman, Michael, Xu, Toby, Satir, Sarp, Gurun, Gokce, Karaman, Mustafa, Degertekin, F. Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2667
container_issue 12
container_start_page 2659
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator Zahorian, Jaime
Hochman, Michael
Xu, Toby
Satir, Sarp
Gurun, Gokce
Karaman, Mustafa
Degertekin, F. Levent
description One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.
doi_str_mv 10.1109/TUFFC.2011.2128
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1313432412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6141156</ieee_id><sourcerecordid>1313432412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVpady05x4KZSkUellHo9HH7iUQlroNxORQ-yy0azlRWEuutBvov682dt2PS09imEcvM_MQ8hboHIDWF6v1YtHMGQWYM2DVMzIDwURZ1UI8JzNaVaJECvSMvErpgVLgvGYvyRlDzlFRmJHlMvjQu-HedUWzXK_K4MtmefutuPaDvYtmcMEX2xCnOppHk7qxN7FY97lKYfSb4mq_7133BKbX5MXW9Mm-Ob7nZL34vGq-lje3X66bq5uyExSHknOglZVI85iyVYK2ktrWGinUhiuKTNgOhVU1F4jM1ApVy20lRYsATHA8J5eH3P3Y7uyms9Nwvd5HtzPxhw7G6b873t3ru_CoUVQ5rc4Bn44BMXwfbRr0zqXO9r3xNoxJAwJyZBzY_1EKtWSqAsjoh3_QhzBGny-ha0YZSCUxQxcHqIshpWi3p7GB6kmqfpKqJ6l6kpp_vP9z2xP_y2IGPh6B7Mf022h859JvTqCSkk1bvztwzlp7akvgAELiT4KqsIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920216763</pqid></control><display><type>article</type><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><source>IEEE Xplore</source><creator>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</creator><creatorcontrib>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</creatorcontrib><description>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>EISSN: 0885-3010</identifier><identifier>DOI: 10.1109/TUFFC.2011.2128</identifier><identifier>PMID: 23443701</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Biological and medical sciences ; Cardiovascular system ; Electronics - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Fabrication ; Fundamental areas of phenomenology (including applications) ; Image Enhancement - instrumentation ; Imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Metals ; Micro-Electrical-Mechanical Systems - instrumentation ; Miniaturization ; Physics ; Reproducibility of Results ; Semiconductors ; Sensitivity and Specificity ; Silicon wafers ; Surface topography ; Surface treatment ; Systems Integration ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic investigative techniques ; Ultrasonic transducers ; Ultrasonography, Interventional - instrumentation ; Wires</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</citedby><cites>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6141156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6141156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25376629$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23443701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahorian, Jaime</creatorcontrib><creatorcontrib>Hochman, Michael</creatorcontrib><creatorcontrib>Xu, Toby</creatorcontrib><creatorcontrib>Satir, Sarp</creatorcontrib><creatorcontrib>Gurun, Gokce</creatorcontrib><creatorcontrib>Karaman, Mustafa</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</description><subject>Acoustics</subject><subject>Biological and medical sciences</subject><subject>Cardiovascular system</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image Enhancement - instrumentation</subject><subject>Imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Metals</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Reproducibility of Results</subject><subject>Semiconductors</subject><subject>Sensitivity and Specificity</subject><subject>Silicon wafers</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Systems Integration</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonography, Interventional - instrumentation</subject><subject>Wires</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>0885-3010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVpady05x4KZSkUellHo9HH7iUQlroNxORQ-yy0azlRWEuutBvov682dt2PS09imEcvM_MQ8hboHIDWF6v1YtHMGQWYM2DVMzIDwURZ1UI8JzNaVaJECvSMvErpgVLgvGYvyRlDzlFRmJHlMvjQu-HedUWzXK_K4MtmefutuPaDvYtmcMEX2xCnOppHk7qxN7FY97lKYfSb4mq_7133BKbX5MXW9Mm-Ob7nZL34vGq-lje3X66bq5uyExSHknOglZVI85iyVYK2ktrWGinUhiuKTNgOhVU1F4jM1ApVy20lRYsATHA8J5eH3P3Y7uyms9Nwvd5HtzPxhw7G6b873t3ru_CoUVQ5rc4Bn44BMXwfbRr0zqXO9r3xNoxJAwJyZBzY_1EKtWSqAsjoh3_QhzBGny-ha0YZSCUxQxcHqIshpWi3p7GB6kmqfpKqJ6l6kpp_vP9z2xP_y2IGPh6B7Mf022h859JvTqCSkk1bvztwzlp7akvgAELiT4KqsIM</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Zahorian, Jaime</creator><creator>Hochman, Michael</creator><creator>Xu, Toby</creator><creator>Satir, Sarp</creator><creator>Gurun, Gokce</creator><creator>Karaman, Mustafa</creator><creator>Degertekin, F. Levent</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><author>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Biological and medical sciences</topic><topic>Cardiovascular system</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image Enhancement - instrumentation</topic><topic>Imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Metals</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Reproducibility of Results</topic><topic>Semiconductors</topic><topic>Sensitivity and Specificity</topic><topic>Silicon wafers</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Systems Integration</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonography, Interventional - instrumentation</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahorian, Jaime</creatorcontrib><creatorcontrib>Hochman, Michael</creatorcontrib><creatorcontrib>Xu, Toby</creatorcontrib><creatorcontrib>Satir, Sarp</creatorcontrib><creatorcontrib>Gurun, Gokce</creatorcontrib><creatorcontrib>Karaman, Mustafa</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zahorian, Jaime</au><au>Hochman, Michael</au><au>Xu, Toby</au><au>Satir, Sarp</au><au>Gurun, Gokce</au><au>Karaman, Mustafa</au><au>Degertekin, F. Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>58</volume><issue>12</issue><spage>2659</spage><epage>2667</epage><pages>2659-2667</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><eissn>0885-3010</eissn><coden>ITUCER</coden><abstract>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23443701</pmid><doi>10.1109/TUFFC.2011.2128</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667
issn 0885-3010
1525-8955
0885-3010
language eng
recordid cdi_proquest_miscellaneous_1313432412
source IEEE Xplore
subjects Acoustics
Biological and medical sciences
Cardiovascular system
Electronics - instrumentation
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Fabrication
Fundamental areas of phenomenology (including applications)
Image Enhancement - instrumentation
Imaging
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Metals
Micro-Electrical-Mechanical Systems - instrumentation
Miniaturization
Physics
Reproducibility of Results
Semiconductors
Sensitivity and Specificity
Silicon wafers
Surface topography
Surface treatment
Systems Integration
Transducers
Transduction
acoustical devices for the generation and reproduction of sound
Ultrasonic investigative techniques
Ultrasonic transducers
Ultrasonography, Interventional - instrumentation
Wires
title Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20CMUT-on-CMOS%20Integration%20for%20Intravascular%20Ultrasound%20Applications&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Zahorian,%20Jaime&rft.date=2011-12-01&rft.volume=58&rft.issue=12&rft.spage=2659&rft.epage=2667&rft.pages=2659-2667&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.2128&rft_dat=%3Cproquest_RIE%3E1313432412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920216763&rft_id=info:pmid/23443701&rft_ieee_id=6141156&rfr_iscdi=true