Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications
One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2667 |
---|---|
container_issue | 12 |
container_start_page | 2659 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 58 |
creator | Zahorian, Jaime Hochman, Michael Xu, Toby Satir, Sarp Gurun, Gokce Karaman, Mustafa Degertekin, F. Levent |
description | One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array. |
doi_str_mv | 10.1109/TUFFC.2011.2128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1313432412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6141156</ieee_id><sourcerecordid>1313432412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVpady05x4KZSkUellHo9HH7iUQlroNxORQ-yy0azlRWEuutBvov682dt2PS09imEcvM_MQ8hboHIDWF6v1YtHMGQWYM2DVMzIDwURZ1UI8JzNaVaJECvSMvErpgVLgvGYvyRlDzlFRmJHlMvjQu-HedUWzXK_K4MtmefutuPaDvYtmcMEX2xCnOppHk7qxN7FY97lKYfSb4mq_7133BKbX5MXW9Mm-Ob7nZL34vGq-lje3X66bq5uyExSHknOglZVI85iyVYK2ktrWGinUhiuKTNgOhVU1F4jM1ApVy20lRYsATHA8J5eH3P3Y7uyms9Nwvd5HtzPxhw7G6b873t3ru_CoUVQ5rc4Bn44BMXwfbRr0zqXO9r3xNoxJAwJyZBzY_1EKtWSqAsjoh3_QhzBGny-ha0YZSCUxQxcHqIshpWi3p7GB6kmqfpKqJ6l6kpp_vP9z2xP_y2IGPh6B7Mf022h859JvTqCSkk1bvztwzlp7akvgAELiT4KqsIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920216763</pqid></control><display><type>article</type><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><source>IEEE Xplore</source><creator>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</creator><creatorcontrib>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</creatorcontrib><description>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>EISSN: 0885-3010</identifier><identifier>DOI: 10.1109/TUFFC.2011.2128</identifier><identifier>PMID: 23443701</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Biological and medical sciences ; Cardiovascular system ; Electronics - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Fabrication ; Fundamental areas of phenomenology (including applications) ; Image Enhancement - instrumentation ; Imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Metals ; Micro-Electrical-Mechanical Systems - instrumentation ; Miniaturization ; Physics ; Reproducibility of Results ; Semiconductors ; Sensitivity and Specificity ; Silicon wafers ; Surface topography ; Surface treatment ; Systems Integration ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic investigative techniques ; Ultrasonic transducers ; Ultrasonography, Interventional - instrumentation ; Wires</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</citedby><cites>FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6141156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6141156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25376629$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23443701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahorian, Jaime</creatorcontrib><creatorcontrib>Hochman, Michael</creatorcontrib><creatorcontrib>Xu, Toby</creatorcontrib><creatorcontrib>Satir, Sarp</creatorcontrib><creatorcontrib>Gurun, Gokce</creatorcontrib><creatorcontrib>Karaman, Mustafa</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</description><subject>Acoustics</subject><subject>Biological and medical sciences</subject><subject>Cardiovascular system</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image Enhancement - instrumentation</subject><subject>Imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Metals</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Reproducibility of Results</subject><subject>Semiconductors</subject><subject>Sensitivity and Specificity</subject><subject>Silicon wafers</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Systems Integration</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonography, Interventional - instrumentation</subject><subject>Wires</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>0885-3010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVpady05x4KZSkUellHo9HH7iUQlroNxORQ-yy0azlRWEuutBvov682dt2PS09imEcvM_MQ8hboHIDWF6v1YtHMGQWYM2DVMzIDwURZ1UI8JzNaVaJECvSMvErpgVLgvGYvyRlDzlFRmJHlMvjQu-HedUWzXK_K4MtmefutuPaDvYtmcMEX2xCnOppHk7qxN7FY97lKYfSb4mq_7133BKbX5MXW9Mm-Ob7nZL34vGq-lje3X66bq5uyExSHknOglZVI85iyVYK2ktrWGinUhiuKTNgOhVU1F4jM1ApVy20lRYsATHA8J5eH3P3Y7uyms9Nwvd5HtzPxhw7G6b873t3ru_CoUVQ5rc4Bn44BMXwfbRr0zqXO9r3xNoxJAwJyZBzY_1EKtWSqAsjoh3_QhzBGny-ha0YZSCUxQxcHqIshpWi3p7GB6kmqfpKqJ6l6kpp_vP9z2xP_y2IGPh6B7Mf022h859JvTqCSkk1bvztwzlp7akvgAELiT4KqsIM</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Zahorian, Jaime</creator><creator>Hochman, Michael</creator><creator>Xu, Toby</creator><creator>Satir, Sarp</creator><creator>Gurun, Gokce</creator><creator>Karaman, Mustafa</creator><creator>Degertekin, F. Levent</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</title><author>Zahorian, Jaime ; Hochman, Michael ; Xu, Toby ; Satir, Sarp ; Gurun, Gokce ; Karaman, Mustafa ; Degertekin, F. Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-44108e6309556b750b60ebea657d470325ec35e7945332a9737b4e865b3112543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Biological and medical sciences</topic><topic>Cardiovascular system</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image Enhancement - instrumentation</topic><topic>Imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Metals</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Reproducibility of Results</topic><topic>Semiconductors</topic><topic>Sensitivity and Specificity</topic><topic>Silicon wafers</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Systems Integration</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonography, Interventional - instrumentation</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahorian, Jaime</creatorcontrib><creatorcontrib>Hochman, Michael</creatorcontrib><creatorcontrib>Xu, Toby</creatorcontrib><creatorcontrib>Satir, Sarp</creatorcontrib><creatorcontrib>Gurun, Gokce</creatorcontrib><creatorcontrib>Karaman, Mustafa</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zahorian, Jaime</au><au>Hochman, Michael</au><au>Xu, Toby</au><au>Satir, Sarp</au><au>Gurun, Gokce</au><au>Karaman, Mustafa</au><au>Degertekin, F. Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>58</volume><issue>12</issue><spage>2659</spage><epage>2667</epage><pages>2659-2667</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><eissn>0885-3010</eissn><coden>ITUCER</coden><abstract>One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23443701</pmid><doi>10.1109/TUFFC.2011.2128</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-12, Vol.58 (12), p.2659-2667 |
issn | 0885-3010 1525-8955 0885-3010 |
language | eng |
recordid | cdi_proquest_miscellaneous_1313432412 |
source | IEEE Xplore |
subjects | Acoustics Biological and medical sciences Cardiovascular system Electronics - instrumentation Equipment Design Equipment Failure Analysis Exact sciences and technology Fabrication Fundamental areas of phenomenology (including applications) Image Enhancement - instrumentation Imaging Investigative techniques, diagnostic techniques (general aspects) Medical sciences Metals Micro-Electrical-Mechanical Systems - instrumentation Miniaturization Physics Reproducibility of Results Semiconductors Sensitivity and Specificity Silicon wafers Surface topography Surface treatment Systems Integration Transducers Transduction acoustical devices for the generation and reproduction of sound Ultrasonic investigative techniques Ultrasonic transducers Ultrasonography, Interventional - instrumentation Wires |
title | Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20CMUT-on-CMOS%20Integration%20for%20Intravascular%20Ultrasound%20Applications&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Zahorian,%20Jaime&rft.date=2011-12-01&rft.volume=58&rft.issue=12&rft.spage=2659&rft.epage=2667&rft.pages=2659-2667&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.2128&rft_dat=%3Cproquest_RIE%3E1313432412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920216763&rft_id=info:pmid/23443701&rft_ieee_id=6141156&rfr_iscdi=true |