Voltage tunability of single-spin states in a quantum dot
Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the soli...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013, Vol.4 (1), p.1522-1522, Article 1522 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1522 |
---|---|
container_issue | 1 |
container_start_page | 1522 |
container_title | Nature communications |
container_volume | 4 |
creator | Bennett, Anthony J. Pooley, Matthew A. Cao, Yameng Sköld, Niklas Farrer, Ian Ritchie, David A. Shields, Andrew J. |
description | Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field. We find that the in-plane
g
-factor varies discontinuously for electrons, as more holes are loaded onto the dot. In contrast, the in-plane hole
g
-factor varies continuously. The device can change the sign of the in-plane
g
-factor of a single hole, at which point an avoided crossing is observed in the two spin eigenstates. This is exactly what is required for universal control of a single spin with a single electrical gate.
Manipulation of spins in the solid state is a promising avenue for quantum information and field sensing applications. Bennett
et al
. demonstrate voltage tunability of single-spin states in a quantum dot as a step towards universal control of a single spin with a single electrical gate. |
doi_str_mv | 10.1038/ncomms2519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1313426002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903632901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-62e8f16a565a8ee71b5d46773098a7f052daaefaebebcbb277a8bed639b56b0a3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgihtzN_4AKXgjSjWfTXspwy8YeKPelpP2dHS0ydakF_v3dm7q0NzkQB7eHF5Czhm9ZVSkd7Zwbeu5YtkRGXMqWcw0F8cH84hMvV_S4YiMpVKekhEXUgql6JhkH64JsMAo9BZM3dRhE7kq8rVdNBj7VW0jHyCgj4YJonUPNvRtVLpwRk4qaDxO9_eEvD8-vM2e4_nr08vsfh4XItUhTjimFUtAJQpSRM2MKmWitaBZCrqiipcAWAEaNIUxXGtIDZaJyIxKDAUxIVe73FXn1j36kLe1L7BpwKLrfc4EE5InlPKBXv6hS9d3dtjuS3GRcblV1ztVdM77Dqt81dUtdJuc0Xzbaf7b6YAv9pG9abH8od8NDuBmB_zwZBfYHfz5P-4T-HeAlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313239242</pqid></control><display><type>article</type><title>Voltage tunability of single-spin states in a quantum dot</title><source>Springer Nature OA Free Journals</source><creator>Bennett, Anthony J. ; Pooley, Matthew A. ; Cao, Yameng ; Sköld, Niklas ; Farrer, Ian ; Ritchie, David A. ; Shields, Andrew J.</creator><creatorcontrib>Bennett, Anthony J. ; Pooley, Matthew A. ; Cao, Yameng ; Sköld, Niklas ; Farrer, Ian ; Ritchie, David A. ; Shields, Andrew J.</creatorcontrib><description>Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field. We find that the in-plane
g
-factor varies discontinuously for electrons, as more holes are loaded onto the dot. In contrast, the in-plane hole
g
-factor varies continuously. The device can change the sign of the in-plane
g
-factor of a single hole, at which point an avoided crossing is observed in the two spin eigenstates. This is exactly what is required for universal control of a single spin with a single electrical gate.
Manipulation of spins in the solid state is a promising avenue for quantum information and field sensing applications. Bennett
et al
. demonstrate voltage tunability of single-spin states in a quantum dot as a step towards universal control of a single spin with a single electrical gate.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2519</identifier><identifier>PMID: 23443550</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/925/357/1017 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.1522-1522, Article 1522</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Feb 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-62e8f16a565a8ee71b5d46773098a7f052daaefaebebcbb277a8bed639b56b0a3</citedby><cites>FETCH-LOGICAL-c387t-62e8f16a565a8ee71b5d46773098a7f052daaefaebebcbb277a8bed639b56b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms2519$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms2519$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,4025,27928,27929,27930,41125,42194,51581</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2519$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23443550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, Anthony J.</creatorcontrib><creatorcontrib>Pooley, Matthew A.</creatorcontrib><creatorcontrib>Cao, Yameng</creatorcontrib><creatorcontrib>Sköld, Niklas</creatorcontrib><creatorcontrib>Farrer, Ian</creatorcontrib><creatorcontrib>Ritchie, David A.</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><title>Voltage tunability of single-spin states in a quantum dot</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field. We find that the in-plane
g
-factor varies discontinuously for electrons, as more holes are loaded onto the dot. In contrast, the in-plane hole
g
-factor varies continuously. The device can change the sign of the in-plane
g
-factor of a single hole, at which point an avoided crossing is observed in the two spin eigenstates. This is exactly what is required for universal control of a single spin with a single electrical gate.
Manipulation of spins in the solid state is a promising avenue for quantum information and field sensing applications. Bennett
et al
. demonstrate voltage tunability of single-spin states in a quantum dot as a step towards universal control of a single spin with a single electrical gate.</description><subject>639/766/119</subject><subject>639/925/357/1017</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0F1LwzAUBuAgihtzN_4AKXgjSjWfTXspwy8YeKPelpP2dHS0ydakF_v3dm7q0NzkQB7eHF5Czhm9ZVSkd7Zwbeu5YtkRGXMqWcw0F8cH84hMvV_S4YiMpVKekhEXUgql6JhkH64JsMAo9BZM3dRhE7kq8rVdNBj7VW0jHyCgj4YJonUPNvRtVLpwRk4qaDxO9_eEvD8-vM2e4_nr08vsfh4XItUhTjimFUtAJQpSRM2MKmWitaBZCrqiipcAWAEaNIUxXGtIDZaJyIxKDAUxIVe73FXn1j36kLe1L7BpwKLrfc4EE5InlPKBXv6hS9d3dtjuS3GRcblV1ztVdM77Dqt81dUtdJuc0Xzbaf7b6YAv9pG9abH8od8NDuBmB_zwZBfYHfz5P-4T-HeAlg</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Bennett, Anthony J.</creator><creator>Pooley, Matthew A.</creator><creator>Cao, Yameng</creator><creator>Sköld, Niklas</creator><creator>Farrer, Ian</creator><creator>Ritchie, David A.</creator><creator>Shields, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Voltage tunability of single-spin states in a quantum dot</title><author>Bennett, Anthony J. ; Pooley, Matthew A. ; Cao, Yameng ; Sköld, Niklas ; Farrer, Ian ; Ritchie, David A. ; Shields, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-62e8f16a565a8ee71b5d46773098a7f052daaefaebebcbb277a8bed639b56b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/119</topic><topic>639/925/357/1017</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Anthony J.</creatorcontrib><creatorcontrib>Pooley, Matthew A.</creatorcontrib><creatorcontrib>Cao, Yameng</creatorcontrib><creatorcontrib>Sköld, Niklas</creatorcontrib><creatorcontrib>Farrer, Ian</creatorcontrib><creatorcontrib>Ritchie, David A.</creatorcontrib><creatorcontrib>Shields, Andrew J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bennett, Anthony J.</au><au>Pooley, Matthew A.</au><au>Cao, Yameng</au><au>Sköld, Niklas</au><au>Farrer, Ian</au><au>Ritchie, David A.</au><au>Shields, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage tunability of single-spin states in a quantum dot</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1522</spage><epage>1522</epage><pages>1522-1522</pages><artnum>1522</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field. We find that the in-plane
g
-factor varies discontinuously for electrons, as more holes are loaded onto the dot. In contrast, the in-plane hole
g
-factor varies continuously. The device can change the sign of the in-plane
g
-factor of a single hole, at which point an avoided crossing is observed in the two spin eigenstates. This is exactly what is required for universal control of a single spin with a single electrical gate.
Manipulation of spins in the solid state is a promising avenue for quantum information and field sensing applications. Bennett
et al
. demonstrate voltage tunability of single-spin states in a quantum dot as a step towards universal control of a single spin with a single electrical gate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23443550</pmid><doi>10.1038/ncomms2519</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013, Vol.4 (1), p.1522-1522, Article 1522 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1313426002 |
source | Springer Nature OA Free Journals |
subjects | 639/766/119 639/925/357/1017 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Voltage tunability of single-spin states in a quantum dot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20tunability%20of%20single-spin%20states%20in%20a%20quantum%20dot&rft.jtitle=Nature%20communications&rft.au=Bennett,%20Anthony%20J.&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=1522&rft.epage=1522&rft.pages=1522-1522&rft.artnum=1522&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2519&rft_dat=%3Cproquest_C6C%3E2903632901%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313239242&rft_id=info:pmid/23443550&rfr_iscdi=true |