Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths

We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-02, Vol.110 (6), p.064101-064101, Article 064101
Hauptverfasser: Iatsenko, D, Petkoski, S, McClintock, P V E, Stefanovska, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064101
container_issue 6
container_start_page 064101
container_title Physical review letters
container_volume 110
creator Iatsenko, D
Petkoski, S
McClintock, P V E
Stefanovska, A
description We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.
doi_str_mv 10.1103/PhysRevLett.110.064101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1312657690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1312657690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</originalsourceid><addsrcrecordid>eNpNkMtOxCAUhonR6Hh5BcPSTfVQLp0ujfEWJ9F4WTeUnjqYtoxANa58damjxhXk8H8f8BNyyOCYMeAnd8uPcI9vC4xxGhyDEgzYBpkxKMqsYExskhkAZ1kJUOyQ3RBeAIDlar5NdnIueJ4LOSOfD1FH6wbtP6geGhq9fsPODs_0PW1oSKcYqGtpXCK9Gb3uXXS0dw129N3GZYKo9rVNXDI0NkRv63EyTlDr8XXEwdjkmOzGjatveYrh8ByXYZ9stboLePCz7pGni_PHs6tscXt5fXa6yAxXImZCCllLWQsQoOtcqRY0KhR8rgs0UjWtKUtlGlkqIWppAHnbmlrpRsxFMvA9crT2rrxLTwqx6m0w2HV6QDeGivFUjSxUCSmq1lHjXQge22rlbZ--VzGopvKrf-VPg2pdfgIPf-4Y6x6bP-y3bf4Fvq2Glg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312657690</pqid></control><display><type>article</type><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><source>American Physical Society Journals</source><creator>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</creator><creatorcontrib>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</creatorcontrib><description>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.110.064101</identifier><identifier>PMID: 23432245</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2013-02, Vol.110 (6), p.064101-064101, Article 064101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</citedby><cites>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23432245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iatsenko, D</creatorcontrib><creatorcontrib>Petkoski, S</creatorcontrib><creatorcontrib>McClintock, P V E</creatorcontrib><creatorcontrib>Stefanovska, A</creatorcontrib><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOxCAUhonR6Hh5BcPSTfVQLp0ujfEWJ9F4WTeUnjqYtoxANa58damjxhXk8H8f8BNyyOCYMeAnd8uPcI9vC4xxGhyDEgzYBpkxKMqsYExskhkAZ1kJUOyQ3RBeAIDlar5NdnIueJ4LOSOfD1FH6wbtP6geGhq9fsPODs_0PW1oSKcYqGtpXCK9Gb3uXXS0dw129N3GZYKo9rVNXDI0NkRv63EyTlDr8XXEwdjkmOzGjatveYrh8ByXYZ9stboLePCz7pGni_PHs6tscXt5fXa6yAxXImZCCllLWQsQoOtcqRY0KhR8rgs0UjWtKUtlGlkqIWppAHnbmlrpRsxFMvA9crT2rrxLTwqx6m0w2HV6QDeGivFUjSxUCSmq1lHjXQge22rlbZ--VzGopvKrf-VPg2pdfgIPf-4Y6x6bP-y3bf4Fvq2Glg</recordid><startdate>20130208</startdate><enddate>20130208</enddate><creator>Iatsenko, D</creator><creator>Petkoski, S</creator><creator>McClintock, P V E</creator><creator>Stefanovska, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130208</creationdate><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><author>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iatsenko, D</creatorcontrib><creatorcontrib>Petkoski, S</creatorcontrib><creatorcontrib>McClintock, P V E</creatorcontrib><creatorcontrib>Stefanovska, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iatsenko, D</au><au>Petkoski, S</au><au>McClintock, P V E</au><au>Stefanovska, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-02-08</date><risdate>2013</risdate><volume>110</volume><issue>6</issue><spage>064101</spage><epage>064101</epage><pages>064101-064101</pages><artnum>064101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</abstract><cop>United States</cop><pmid>23432245</pmid><doi>10.1103/PhysRevLett.110.064101</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2013-02, Vol.110 (6), p.064101-064101, Article 064101
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1312657690
source American Physical Society Journals
title Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationary%20and%20traveling%20wave%20states%20of%20the%20Kuramoto%20model%20with%20an%20arbitrary%20distribution%20of%20frequencies%20and%20coupling%20strengths&rft.jtitle=Physical%20review%20letters&rft.au=Iatsenko,%20D&rft.date=2013-02-08&rft.volume=110&rft.issue=6&rft.spage=064101&rft.epage=064101&rft.pages=064101-064101&rft.artnum=064101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.110.064101&rft_dat=%3Cproquest_cross%3E1312657690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312657690&rft_id=info:pmid/23432245&rfr_iscdi=true