Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths
We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirica...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2013-02, Vol.110 (6), p.064101-064101, Article 064101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064101 |
---|---|
container_issue | 6 |
container_start_page | 064101 |
container_title | Physical review letters |
container_volume | 110 |
creator | Iatsenko, D Petkoski, S McClintock, P V E Stefanovska, A |
description | We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology. |
doi_str_mv | 10.1103/PhysRevLett.110.064101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1312657690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1312657690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</originalsourceid><addsrcrecordid>eNpNkMtOxCAUhonR6Hh5BcPSTfVQLp0ujfEWJ9F4WTeUnjqYtoxANa58damjxhXk8H8f8BNyyOCYMeAnd8uPcI9vC4xxGhyDEgzYBpkxKMqsYExskhkAZ1kJUOyQ3RBeAIDlar5NdnIueJ4LOSOfD1FH6wbtP6geGhq9fsPODs_0PW1oSKcYqGtpXCK9Gb3uXXS0dw129N3GZYKo9rVNXDI0NkRv63EyTlDr8XXEwdjkmOzGjatveYrh8ByXYZ9stboLePCz7pGni_PHs6tscXt5fXa6yAxXImZCCllLWQsQoOtcqRY0KhR8rgs0UjWtKUtlGlkqIWppAHnbmlrpRsxFMvA9crT2rrxLTwqx6m0w2HV6QDeGivFUjSxUCSmq1lHjXQge22rlbZ--VzGopvKrf-VPg2pdfgIPf-4Y6x6bP-y3bf4Fvq2Glg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312657690</pqid></control><display><type>article</type><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><source>American Physical Society Journals</source><creator>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</creator><creatorcontrib>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</creatorcontrib><description>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.110.064101</identifier><identifier>PMID: 23432245</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2013-02, Vol.110 (6), p.064101-064101, Article 064101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</citedby><cites>FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23432245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iatsenko, D</creatorcontrib><creatorcontrib>Petkoski, S</creatorcontrib><creatorcontrib>McClintock, P V E</creatorcontrib><creatorcontrib>Stefanovska, A</creatorcontrib><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOxCAUhonR6Hh5BcPSTfVQLp0ujfEWJ9F4WTeUnjqYtoxANa58damjxhXk8H8f8BNyyOCYMeAnd8uPcI9vC4xxGhyDEgzYBpkxKMqsYExskhkAZ1kJUOyQ3RBeAIDlar5NdnIueJ4LOSOfD1FH6wbtP6geGhq9fsPODs_0PW1oSKcYqGtpXCK9Gb3uXXS0dw129N3GZYKo9rVNXDI0NkRv63EyTlDr8XXEwdjkmOzGjatveYrh8ByXYZ9stboLePCz7pGni_PHs6tscXt5fXa6yAxXImZCCllLWQsQoOtcqRY0KhR8rgs0UjWtKUtlGlkqIWppAHnbmlrpRsxFMvA9crT2rrxLTwqx6m0w2HV6QDeGivFUjSxUCSmq1lHjXQge22rlbZ--VzGopvKrf-VPg2pdfgIPf-4Y6x6bP-y3bf4Fvq2Glg</recordid><startdate>20130208</startdate><enddate>20130208</enddate><creator>Iatsenko, D</creator><creator>Petkoski, S</creator><creator>McClintock, P V E</creator><creator>Stefanovska, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130208</creationdate><title>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</title><author>Iatsenko, D ; Petkoski, S ; McClintock, P V E ; Stefanovska, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4545b55b4040ab266f0ae6e438a7ec56dfc996cd59644b5c0e3ffcb6ad4843643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iatsenko, D</creatorcontrib><creatorcontrib>Petkoski, S</creatorcontrib><creatorcontrib>McClintock, P V E</creatorcontrib><creatorcontrib>Stefanovska, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iatsenko, D</au><au>Petkoski, S</au><au>McClintock, P V E</au><au>Stefanovska, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-02-08</date><risdate>2013</risdate><volume>110</volume><issue>6</issue><spage>064101</spage><epage>064101</epage><pages>064101-064101</pages><artnum>064101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.</abstract><cop>United States</cop><pmid>23432245</pmid><doi>10.1103/PhysRevLett.110.064101</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2013-02, Vol.110 (6), p.064101-064101, Article 064101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1312657690 |
source | American Physical Society Journals |
title | Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationary%20and%20traveling%20wave%20states%20of%20the%20Kuramoto%20model%20with%20an%20arbitrary%20distribution%20of%20frequencies%20and%20coupling%20strengths&rft.jtitle=Physical%20review%20letters&rft.au=Iatsenko,%20D&rft.date=2013-02-08&rft.volume=110&rft.issue=6&rft.spage=064101&rft.epage=064101&rft.pages=064101-064101&rft.artnum=064101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.110.064101&rft_dat=%3Cproquest_cross%3E1312657690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312657690&rft_id=info:pmid/23432245&rfr_iscdi=true |