On Musical Dissonance
psychoacoustic theories of dissonance often follow Helmholtz and attribute it to partials (fundamental frequencies or overtones) near enough in frequency to affect the same region of the basilar membrane and therefore to cause roughness, i.e., rapid beating. In contrast, tonal theories attribute dis...
Gespeichert in:
Veröffentlicht in: | Music perception 2012-09, Vol.30 (1), p.19-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Music perception |
container_volume | 30 |
creator | Johnson-Laird, Phil N Kang, Olivia E Leong, Yuan Chang |
description | psychoacoustic theories of dissonance often
follow Helmholtz and attribute it to partials (fundamental frequencies or overtones) near enough in frequency to affect the same region of the basilar membrane and therefore to cause roughness, i.e., rapid beating. In contrast, tonal theories attribute dissonance to violations of harmonic principles embodied in Western music. We propose a dual-process theory that embeds roughness within tonal principles. The theory predicts the robust increasing trend in the dissonance of triads: major < minor < diminished < augmented. Previous experiments used too few chords for a comprehensive test of the theory, and so Experiment 1 examined the rated dissonance of all 55 possible three-note chords, and Experiment 2 examined a representative sample of 48 of the possible four-note chords. The participants' ratings concurred reliably and corroborated the dual-process theory. Experiment 3 showed that, as the theory predicts, consonant chords are rated as less dissonant when they occur in a tonal sequence (the cycle of fifths) than in a random sequence, whereas this manipulation has no reliable effect on dissonant chords outside common musical practice. |
doi_str_mv | 10.1525/mp.2012.30.1.19 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1312413593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1525/mp.2012.30.1.19</jstor_id><sourcerecordid>10.1525/mp.2012.30.1.19</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-37502577067adefd552ae4781fc75207327b69077aa2b48c6cbad206cd4867ec3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqUwItZKLAwkvfPFdjKi8ikVdYHZchxHSpUv7GTgv8dVmViYTk_6vXdPj7EbhBQFF-tuTDkgTynqFIsTtkBBlOSE_JQtQBEkKufFObsIYQ-AxIVcsOtdv3qfQ2NNu3psQhh601t3yc5q0wZ39XuX7PP56WPzmmx3L2-bh21iiYopISWAC6VAKlO5uhKCG5epHGurBI8vuSplAUoZw8sst9KWpuIgbZXlUjlLS3Z3zB398DW7MOmuCda1rendMAeNsXyGJAqK6O0fdD_Mvo_tNEKGIFFAEan1kbJ-CMG7Wo--6Yz_jpA-zKS7UR9m0hS1xoPj_ujYh2nw_-I__shlOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041061509</pqid></control><display><type>article</type><title>On Musical Dissonance</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Johnson-Laird, Phil N ; Kang, Olivia E ; Leong, Yuan Chang</creator><creatorcontrib>Johnson-Laird, Phil N ; Kang, Olivia E ; Leong, Yuan Chang</creatorcontrib><description>psychoacoustic theories of dissonance often
follow Helmholtz and attribute it to partials (fundamental frequencies or overtones) near enough in frequency to affect the same region of the basilar membrane and therefore to cause roughness, i.e., rapid beating. In contrast, tonal theories attribute dissonance to violations of harmonic principles embodied in Western music. We propose a dual-process theory that embeds roughness within tonal principles. The theory predicts the robust increasing trend in the dissonance of triads: major < minor < diminished < augmented. Previous experiments used too few chords for a comprehensive test of the theory, and so Experiment 1 examined the rated dissonance of all 55 possible three-note chords, and Experiment 2 examined a representative sample of 48 of the possible four-note chords. The participants' ratings concurred reliably and corroborated the dual-process theory. Experiment 3 showed that, as the theory predicts, consonant chords are rated as less dissonant when they occur in a tonal sequence (the cycle of fifths) than in a random sequence, whereas this manipulation has no reliable effect on dissonant chords outside common musical practice.</description><identifier>ISSN: 0730-7829</identifier><identifier>EISSN: 1533-8312</identifier><identifier>DOI: 10.1525/mp.2012.30.1.19</identifier><language>eng</language><publisher>Berkeley: University of California Press</publisher><subject>Augmented chords ; Chord inversions ; Ears & hearing ; Experiments ; Fourier analysis ; Fundamental frequency ; Listening ; Major chords ; Minor chords ; Music ; Musical chords ; Musical consonance ; Musical dissonance ; Overtones ; Psychoacoustics ; Roughness ; Seventh chords ; Tonal theory</subject><ispartof>Music perception, 2012-09, Vol.30 (1), p.19-35</ispartof><rights>2012 by The Regents of the University of California</rights><rights>Copyright University of California Press Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-37502577067adefd552ae4781fc75207327b69077aa2b48c6cbad206cd4867ec3</citedby><cites>FETCH-LOGICAL-c339t-37502577067adefd552ae4781fc75207327b69077aa2b48c6cbad206cd4867ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnson-Laird, Phil N</creatorcontrib><creatorcontrib>Kang, Olivia E</creatorcontrib><creatorcontrib>Leong, Yuan Chang</creatorcontrib><title>On Musical Dissonance</title><title>Music perception</title><description>psychoacoustic theories of dissonance often
follow Helmholtz and attribute it to partials (fundamental frequencies or overtones) near enough in frequency to affect the same region of the basilar membrane and therefore to cause roughness, i.e., rapid beating. In contrast, tonal theories attribute dissonance to violations of harmonic principles embodied in Western music. We propose a dual-process theory that embeds roughness within tonal principles. The theory predicts the robust increasing trend in the dissonance of triads: major < minor < diminished < augmented. Previous experiments used too few chords for a comprehensive test of the theory, and so Experiment 1 examined the rated dissonance of all 55 possible three-note chords, and Experiment 2 examined a representative sample of 48 of the possible four-note chords. The participants' ratings concurred reliably and corroborated the dual-process theory. Experiment 3 showed that, as the theory predicts, consonant chords are rated as less dissonant when they occur in a tonal sequence (the cycle of fifths) than in a random sequence, whereas this manipulation has no reliable effect on dissonant chords outside common musical practice.</description><subject>Augmented chords</subject><subject>Chord inversions</subject><subject>Ears & hearing</subject><subject>Experiments</subject><subject>Fourier analysis</subject><subject>Fundamental frequency</subject><subject>Listening</subject><subject>Major chords</subject><subject>Minor chords</subject><subject>Music</subject><subject>Musical chords</subject><subject>Musical consonance</subject><subject>Musical dissonance</subject><subject>Overtones</subject><subject>Psychoacoustics</subject><subject>Roughness</subject><subject>Seventh chords</subject><subject>Tonal theory</subject><issn>0730-7829</issn><issn>1533-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>A3D</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DJMCT</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkL1PwzAQxS0EEqUwItZKLAwkvfPFdjKi8ikVdYHZchxHSpUv7GTgv8dVmViYTk_6vXdPj7EbhBQFF-tuTDkgTynqFIsTtkBBlOSE_JQtQBEkKufFObsIYQ-AxIVcsOtdv3qfQ2NNu3psQhh601t3yc5q0wZ39XuX7PP56WPzmmx3L2-bh21iiYopISWAC6VAKlO5uhKCG5epHGurBI8vuSplAUoZw8sst9KWpuIgbZXlUjlLS3Z3zB398DW7MOmuCda1rendMAeNsXyGJAqK6O0fdD_Mvo_tNEKGIFFAEan1kbJ-CMG7Wo--6Yz_jpA-zKS7UR9m0hS1xoPj_ujYh2nw_-I__shlOw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Johnson-Laird, Phil N</creator><creator>Kang, Olivia E</creator><creator>Leong, Yuan Chang</creator><general>University of California Press</general><general>University of California Press Books Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>A3D</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C18</scope><scope>CCPQU</scope><scope>DJMCT</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>LIQON</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20120901</creationdate><title>On Musical Dissonance</title><author>Johnson-Laird, Phil N ; Kang, Olivia E ; Leong, Yuan Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-37502577067adefd552ae4781fc75207327b69077aa2b48c6cbad206cd4867ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Augmented chords</topic><topic>Chord inversions</topic><topic>Ears & hearing</topic><topic>Experiments</topic><topic>Fourier analysis</topic><topic>Fundamental frequency</topic><topic>Listening</topic><topic>Major chords</topic><topic>Minor chords</topic><topic>Music</topic><topic>Musical chords</topic><topic>Musical consonance</topic><topic>Musical dissonance</topic><topic>Overtones</topic><topic>Psychoacoustics</topic><topic>Roughness</topic><topic>Seventh chords</topic><topic>Tonal theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson-Laird, Phil N</creatorcontrib><creatorcontrib>Kang, Olivia E</creatorcontrib><creatorcontrib>Leong, Yuan Chang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Music Periodicals Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Humanities Index</collection><collection>ProQuest One Community College</collection><collection>Music & Performing Arts Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Music perception</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson-Laird, Phil N</au><au>Kang, Olivia E</au><au>Leong, Yuan Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Musical Dissonance</atitle><jtitle>Music perception</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>30</volume><issue>1</issue><spage>19</spage><epage>35</epage><pages>19-35</pages><issn>0730-7829</issn><eissn>1533-8312</eissn><abstract>psychoacoustic theories of dissonance often
follow Helmholtz and attribute it to partials (fundamental frequencies or overtones) near enough in frequency to affect the same region of the basilar membrane and therefore to cause roughness, i.e., rapid beating. In contrast, tonal theories attribute dissonance to violations of harmonic principles embodied in Western music. We propose a dual-process theory that embeds roughness within tonal principles. The theory predicts the robust increasing trend in the dissonance of triads: major < minor < diminished < augmented. Previous experiments used too few chords for a comprehensive test of the theory, and so Experiment 1 examined the rated dissonance of all 55 possible three-note chords, and Experiment 2 examined a representative sample of 48 of the possible four-note chords. The participants' ratings concurred reliably and corroborated the dual-process theory. Experiment 3 showed that, as the theory predicts, consonant chords are rated as less dissonant when they occur in a tonal sequence (the cycle of fifths) than in a random sequence, whereas this manipulation has no reliable effect on dissonant chords outside common musical practice.</abstract><cop>Berkeley</cop><pub>University of California Press</pub><doi>10.1525/mp.2012.30.1.19</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7829 |
ispartof | Music perception, 2012-09, Vol.30 (1), p.19-35 |
issn | 0730-7829 1533-8312 |
language | eng |
recordid | cdi_proquest_miscellaneous_1312413593 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Augmented chords Chord inversions Ears & hearing Experiments Fourier analysis Fundamental frequency Listening Major chords Minor chords Music Musical chords Musical consonance Musical dissonance Overtones Psychoacoustics Roughness Seventh chords Tonal theory |
title | On Musical Dissonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Musical%20Dissonance&rft.jtitle=Music%20perception&rft.au=Johnson-Laird,%20Phil%20N&rft.date=2012-09-01&rft.volume=30&rft.issue=1&rft.spage=19&rft.epage=35&rft.pages=19-35&rft.issn=0730-7829&rft.eissn=1533-8312&rft_id=info:doi/10.1525/mp.2012.30.1.19&rft_dat=%3Cjstor_proqu%3E10.1525/mp.2012.30.1.19%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041061509&rft_id=info:pmid/&rft_jstor_id=10.1525/mp.2012.30.1.19&rfr_iscdi=true |