Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain

DNA microarray-based genome-wide transcriptional profiling and gene network analyses were used to characterize the molecular underpinnings of the neocortical organization in rhesus macaque, with particular focus on the differences in the functional annotation of genes in the primary motor cortex (M1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2013-01, Vol.38 (1), p.133-140
Hauptverfasser: Kojima, Toshio, Higo, Noriyuki, Sato, Akira, Oishi, Takao, Nishimura, Yukio, Yamamoto, Tatsuya, Murata, Yumi, Yoshino-Saito, Kimika, Onoe, Hirotaka, Isa, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 133
container_title Neurochemical research
container_volume 38
creator Kojima, Toshio
Higo, Noriyuki
Sato, Akira
Oishi, Takao
Nishimura, Yukio
Yamamoto, Tatsuya
Murata, Yumi
Yoshino-Saito, Kimika
Onoe, Hirotaka
Isa, Tadashi
description DNA microarray-based genome-wide transcriptional profiling and gene network analyses were used to characterize the molecular underpinnings of the neocortical organization in rhesus macaque, with particular focus on the differences in the functional annotation of genes in the primary motor cortex (M1) and the prefrontal association cortex (area 46 of Brodmann). Functional annotation of the differentially expressed genes showed that the list of genes selectively expressed in M1 was enriched with genes involved in oligodendrocyte function, and energy consumption. The annotation appears to have successfully extracted the characteristics of the molecular structure of M1.
doi_str_mv 10.1007/s11064-012-0900-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291621729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858237201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c358bef0ac8f98af66556d4206cd478070fa7a0823216a4bb8d2866999606a63</originalsourceid><addsrcrecordid>eNqNkU1LHTEUhkOx1KvtD-imBNx0M-3JxySTpV4_Kijtwn3IzSQyMje5Jhlat_7yZhiVUhBchZPznOfAeRH6TOAbAZDfMyEgeAOENqAAGv4OrUgrWSMUsD20Ala7jCjYRwc53wHUKUo-oH3KoOUg-Qo9nk_BliEGM-LjEGIxc4GjxxcuuIxPB-9dcqEMZhwf8NmfXXI5ux6fuPLbuYB_pWFr0gO-jiUmbEJff5xPMZTZmHO0w6Jcx1QGW5XVfW2suZ8cPklmCB_Re2_G7D49vYfo5vzsZv2jufp5cbk-vmosl6Q0lrXdxnkwtvOqM16IthU9pyBsz2UHEryRBjrKKBGGbzZdTzshlFIChBHsEH1dtLsU6-5c9HbI1o2jCS5OWROqiKBEUvUGVDIqKFBW0aP_0Ls4pXrNmRJCkLq9qxRZKJtizvU-erecTRPQc5R6iVLXKPUcpeZ15suTedpsXf8y8ZxdBegC5NoKty79s_pV618pw6jF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266619608</pqid></control><display><type>article</type><title>Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kojima, Toshio ; Higo, Noriyuki ; Sato, Akira ; Oishi, Takao ; Nishimura, Yukio ; Yamamoto, Tatsuya ; Murata, Yumi ; Yoshino-Saito, Kimika ; Onoe, Hirotaka ; Isa, Tadashi</creator><creatorcontrib>Kojima, Toshio ; Higo, Noriyuki ; Sato, Akira ; Oishi, Takao ; Nishimura, Yukio ; Yamamoto, Tatsuya ; Murata, Yumi ; Yoshino-Saito, Kimika ; Onoe, Hirotaka ; Isa, Tadashi</creatorcontrib><description>DNA microarray-based genome-wide transcriptional profiling and gene network analyses were used to characterize the molecular underpinnings of the neocortical organization in rhesus macaque, with particular focus on the differences in the functional annotation of genes in the primary motor cortex (M1) and the prefrontal association cortex (area 46 of Brodmann). Functional annotation of the differentially expressed genes showed that the list of genes selectively expressed in M1 was enriched with genes involved in oligodendrocyte function, and energy consumption. The annotation appears to have successfully extracted the characteristics of the molecular structure of M1.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-012-0900-4</identifier><identifier>PMID: 23054074</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Cell Biology ; Energy Metabolism - genetics ; Gene Expression Regulation - physiology ; Gene Regulatory Networks - genetics ; Genome-Wide Association Study ; Macaca mulatta ; Microarray Analysis ; Motor Cortex - metabolism ; Neurochemistry ; Neurology ; Neurosciences ; Oligodendroglia - physiology ; Original Paper ; Prefrontal Cortex - metabolism ; RNA - biosynthesis ; RNA - isolation &amp; purification</subject><ispartof>Neurochemical research, 2013-01, Vol.38 (1), p.133-140</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c358bef0ac8f98af66556d4206cd478070fa7a0823216a4bb8d2866999606a63</citedby><cites>FETCH-LOGICAL-c471t-c358bef0ac8f98af66556d4206cd478070fa7a0823216a4bb8d2866999606a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-012-0900-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-012-0900-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23054074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kojima, Toshio</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><creatorcontrib>Sato, Akira</creatorcontrib><creatorcontrib>Oishi, Takao</creatorcontrib><creatorcontrib>Nishimura, Yukio</creatorcontrib><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Murata, Yumi</creatorcontrib><creatorcontrib>Yoshino-Saito, Kimika</creatorcontrib><creatorcontrib>Onoe, Hirotaka</creatorcontrib><creatorcontrib>Isa, Tadashi</creatorcontrib><title>Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>DNA microarray-based genome-wide transcriptional profiling and gene network analyses were used to characterize the molecular underpinnings of the neocortical organization in rhesus macaque, with particular focus on the differences in the functional annotation of genes in the primary motor cortex (M1) and the prefrontal association cortex (area 46 of Brodmann). Functional annotation of the differentially expressed genes showed that the list of genes selectively expressed in M1 was enriched with genes involved in oligodendrocyte function, and energy consumption. The annotation appears to have successfully extracted the characteristics of the molecular structure of M1.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Energy Metabolism - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Macaca mulatta</subject><subject>Microarray Analysis</subject><subject>Motor Cortex - metabolism</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Oligodendroglia - physiology</subject><subject>Original Paper</subject><subject>Prefrontal Cortex - metabolism</subject><subject>RNA - biosynthesis</subject><subject>RNA - isolation &amp; purification</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1LHTEUhkOx1KvtD-imBNx0M-3JxySTpV4_Kijtwn3IzSQyMje5Jhlat_7yZhiVUhBchZPznOfAeRH6TOAbAZDfMyEgeAOENqAAGv4OrUgrWSMUsD20Ala7jCjYRwc53wHUKUo-oH3KoOUg-Qo9nk_BliEGM-LjEGIxc4GjxxcuuIxPB-9dcqEMZhwf8NmfXXI5ux6fuPLbuYB_pWFr0gO-jiUmbEJff5xPMZTZmHO0w6Jcx1QGW5XVfW2suZ8cPklmCB_Re2_G7D49vYfo5vzsZv2jufp5cbk-vmosl6Q0lrXdxnkwtvOqM16IthU9pyBsz2UHEryRBjrKKBGGbzZdTzshlFIChBHsEH1dtLsU6-5c9HbI1o2jCS5OWROqiKBEUvUGVDIqKFBW0aP_0Ls4pXrNmRJCkLq9qxRZKJtizvU-erecTRPQc5R6iVLXKPUcpeZ15suTedpsXf8y8ZxdBegC5NoKty79s_pV618pw6jF</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Kojima, Toshio</creator><creator>Higo, Noriyuki</creator><creator>Sato, Akira</creator><creator>Oishi, Takao</creator><creator>Nishimura, Yukio</creator><creator>Yamamoto, Tatsuya</creator><creator>Murata, Yumi</creator><creator>Yoshino-Saito, Kimika</creator><creator>Onoe, Hirotaka</creator><creator>Isa, Tadashi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>RC3</scope></search><sort><creationdate>20130101</creationdate><title>Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain</title><author>Kojima, Toshio ; Higo, Noriyuki ; Sato, Akira ; Oishi, Takao ; Nishimura, Yukio ; Yamamoto, Tatsuya ; Murata, Yumi ; Yoshino-Saito, Kimika ; Onoe, Hirotaka ; Isa, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c358bef0ac8f98af66556d4206cd478070fa7a0823216a4bb8d2866999606a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Energy Metabolism - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Macaca mulatta</topic><topic>Microarray Analysis</topic><topic>Motor Cortex - metabolism</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Oligodendroglia - physiology</topic><topic>Original Paper</topic><topic>Prefrontal Cortex - metabolism</topic><topic>RNA - biosynthesis</topic><topic>RNA - isolation &amp; purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojima, Toshio</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><creatorcontrib>Sato, Akira</creatorcontrib><creatorcontrib>Oishi, Takao</creatorcontrib><creatorcontrib>Nishimura, Yukio</creatorcontrib><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Murata, Yumi</creatorcontrib><creatorcontrib>Yoshino-Saito, Kimika</creatorcontrib><creatorcontrib>Onoe, Hirotaka</creatorcontrib><creatorcontrib>Isa, Tadashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojima, Toshio</au><au>Higo, Noriyuki</au><au>Sato, Akira</au><au>Oishi, Takao</au><au>Nishimura, Yukio</au><au>Yamamoto, Tatsuya</au><au>Murata, Yumi</au><au>Yoshino-Saito, Kimika</au><au>Onoe, Hirotaka</au><au>Isa, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>38</volume><issue>1</issue><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>DNA microarray-based genome-wide transcriptional profiling and gene network analyses were used to characterize the molecular underpinnings of the neocortical organization in rhesus macaque, with particular focus on the differences in the functional annotation of genes in the primary motor cortex (M1) and the prefrontal association cortex (area 46 of Brodmann). Functional annotation of the differentially expressed genes showed that the list of genes selectively expressed in M1 was enriched with genes involved in oligodendrocyte function, and energy consumption. The annotation appears to have successfully extracted the characteristics of the molecular structure of M1.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23054074</pmid><doi>10.1007/s11064-012-0900-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2013-01, Vol.38 (1), p.133-140
issn 0364-3190
1573-6903
language eng
recordid cdi_proquest_miscellaneous_1291621729
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Brain
Cell Biology
Energy Metabolism - genetics
Gene Expression Regulation - physiology
Gene Regulatory Networks - genetics
Genome-Wide Association Study
Macaca mulatta
Microarray Analysis
Motor Cortex - metabolism
Neurochemistry
Neurology
Neurosciences
Oligodendroglia - physiology
Original Paper
Prefrontal Cortex - metabolism
RNA - biosynthesis
RNA - isolation & purification
title Functional Annotation of Genes Differentially Expressed Between Primary Motor and Prefrontal Association Cortices of Macaque Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Annotation%20of%20Genes%20Differentially%20Expressed%20Between%20Primary%20Motor%20and%20Prefrontal%20Association%20Cortices%20of%20Macaque%20Brain&rft.jtitle=Neurochemical%20research&rft.au=Kojima,%20Toshio&rft.date=2013-01-01&rft.volume=38&rft.issue=1&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-012-0900-4&rft_dat=%3Cproquest_cross%3E2858237201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266619608&rft_id=info:pmid/23054074&rfr_iscdi=true