Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues

During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2013-02, Vol.28 (2), p.246-259
Hauptverfasser: Ehlen, Harald WA, Chinenkova, Milana, Moser, Markus, Munter, Hans‐Markus, Krause, Yvonne, Gross, Stefanie, Brachvogel, Bent, Wuelling, Manuela, Kornak, Uwe, Vortkamp, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 2
container_start_page 246
container_title Journal of bone and mineral research
container_volume 28
creator Ehlen, Harald WA
Chinenkova, Milana
Moser, Markus
Munter, Hans‐Markus
Krause, Yvonne
Gross, Stefanie
Brachvogel, Bent
Wuelling, Manuela
Kornak, Uwe
Vortkamp, Andrea
description During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp‐expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6−/− osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium‐dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite. © 2013 American Society for Bone and Mineral Research
doi_str_mv 10.1002/jbmr.1751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291618504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291618504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4871-d99824b8f523bab49076a67518475fe39a1e0b06683ee4ca63f6b273bd107e953</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhwQsgS2xAajp27PhnCVWBoiIkVNaRndy0Hpw4tR2q2fEIvAAvx5Pg6RQWSIjVla6-e47uOQg9peSYElKvN3aMx1Q29B5a0aZmFReK3kcrohSvCGf0AD1KaUMIEY0QD9FBXWsmWMNX6MfZZLrsvprswoTDgM0UumxGN_389l2sL0YYqRiOsMERLhdvcog7ar4Kab4qR_3WJ4huApy6aEbr3XSJXVFKGYL1JuV0hD2YPuEccA9dBJOgx8UAovFlM4fkbs3LVfoCHnJZZ5fSAukxejCYYvDkbh6iz29OL07eVecf356dvDqvOq4krXqtVc2tGsrv1liuiRRGlDwUl80ATBsKxBIhFAPgnRFsELaWzPaUSNANO0Qv9rpzDNfFN7ejSx14byYIS2ppramgqilZ_h-VrFFEEl3Q53-hm7DEqTxSKKG5VEzIQr3cU10MKUUY2jm60cRtS0m7q7fd1dvu6i3sszvFxY7Q_yF_91mA9R64cR62_1Zq37_-8OlW8hc9v7HM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269478367</pqid></control><display><type>article</type><title>Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ehlen, Harald WA ; Chinenkova, Milana ; Moser, Markus ; Munter, Hans‐Markus ; Krause, Yvonne ; Gross, Stefanie ; Brachvogel, Bent ; Wuelling, Manuela ; Kornak, Uwe ; Vortkamp, Andrea</creator><creatorcontrib>Ehlen, Harald WA ; Chinenkova, Milana ; Moser, Markus ; Munter, Hans‐Markus ; Krause, Yvonne ; Gross, Stefanie ; Brachvogel, Bent ; Wuelling, Manuela ; Kornak, Uwe ; Vortkamp, Andrea</creatorcontrib><description>During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp‐expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6−/− osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium‐dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite. © 2013 American Society for Bone and Mineral Research</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.1751</identifier><identifier>PMID: 22936354</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Animals, Newborn ; ANOCTAMIN ; Anoctamins ; Biological Transport ; Bone and Bones - metabolism ; Bone matrix ; Calcification, Physiologic ; Calcium ; Cells, Cultured ; Chloride channels ; Chondrocytes ; Crystals ; Embryo, Mammalian - metabolism ; Embryo, Mammalian - pathology ; Embryogenesis ; Extracellular matrix ; Hydroxyapatite ; Membrane proteins ; Mice ; Mice, Mutant Strains ; MINERALIZATION ; mRNA ; OSTEOBLAST ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteoid ; Periosteum ; Phenotype ; phosphatidylserine ; Phosphatidylserines - metabolism ; PHOSPHOLIPID SCRAMBLING ; Phospholipid Transfer Proteins - deficiency ; Phospholipid Transfer Proteins - metabolism ; Plasma membranes ; SKELETAL DEVELOPMENT ; Skeletogenesis ; Skeleton ; Skull - pathology</subject><ispartof>Journal of bone and mineral research, 2013-02, Vol.28 (2), p.246-259</ispartof><rights>Copyright © 2013 American Society for Bone and Mineral Research</rights><rights>Copyright © 2013 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4871-d99824b8f523bab49076a67518475fe39a1e0b06683ee4ca63f6b273bd107e953</citedby><cites>FETCH-LOGICAL-c4871-d99824b8f523bab49076a67518475fe39a1e0b06683ee4ca63f6b273bd107e953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.1751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.1751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22936354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehlen, Harald WA</creatorcontrib><creatorcontrib>Chinenkova, Milana</creatorcontrib><creatorcontrib>Moser, Markus</creatorcontrib><creatorcontrib>Munter, Hans‐Markus</creatorcontrib><creatorcontrib>Krause, Yvonne</creatorcontrib><creatorcontrib>Gross, Stefanie</creatorcontrib><creatorcontrib>Brachvogel, Bent</creatorcontrib><creatorcontrib>Wuelling, Manuela</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><creatorcontrib>Vortkamp, Andrea</creatorcontrib><title>Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp‐expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6−/− osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium‐dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite. © 2013 American Society for Bone and Mineral Research</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>ANOCTAMIN</subject><subject>Anoctamins</subject><subject>Biological Transport</subject><subject>Bone and Bones - metabolism</subject><subject>Bone matrix</subject><subject>Calcification, Physiologic</subject><subject>Calcium</subject><subject>Cells, Cultured</subject><subject>Chloride channels</subject><subject>Chondrocytes</subject><subject>Crystals</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryo, Mammalian - pathology</subject><subject>Embryogenesis</subject><subject>Extracellular matrix</subject><subject>Hydroxyapatite</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>MINERALIZATION</subject><subject>mRNA</subject><subject>OSTEOBLAST</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteoid</subject><subject>Periosteum</subject><subject>Phenotype</subject><subject>phosphatidylserine</subject><subject>Phosphatidylserines - metabolism</subject><subject>PHOSPHOLIPID SCRAMBLING</subject><subject>Phospholipid Transfer Proteins - deficiency</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Plasma membranes</subject><subject>SKELETAL DEVELOPMENT</subject><subject>Skeletogenesis</subject><subject>Skeleton</subject><subject>Skull - pathology</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhwQsgS2xAajp27PhnCVWBoiIkVNaRndy0Hpw4tR2q2fEIvAAvx5Pg6RQWSIjVla6-e47uOQg9peSYElKvN3aMx1Q29B5a0aZmFReK3kcrohSvCGf0AD1KaUMIEY0QD9FBXWsmWMNX6MfZZLrsvprswoTDgM0UumxGN_389l2sL0YYqRiOsMERLhdvcog7ar4Kab4qR_3WJ4huApy6aEbr3XSJXVFKGYL1JuV0hD2YPuEccA9dBJOgx8UAovFlM4fkbs3LVfoCHnJZZ5fSAukxejCYYvDkbh6iz29OL07eVecf356dvDqvOq4krXqtVc2tGsrv1liuiRRGlDwUl80ATBsKxBIhFAPgnRFsELaWzPaUSNANO0Qv9rpzDNfFN7ejSx14byYIS2ppramgqilZ_h-VrFFEEl3Q53-hm7DEqTxSKKG5VEzIQr3cU10MKUUY2jm60cRtS0m7q7fd1dvu6i3sszvFxY7Q_yF_91mA9R64cR62_1Zq37_-8OlW8hc9v7HM</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Ehlen, Harald WA</creator><creator>Chinenkova, Milana</creator><creator>Moser, Markus</creator><creator>Munter, Hans‐Markus</creator><creator>Krause, Yvonne</creator><creator>Gross, Stefanie</creator><creator>Brachvogel, Bent</creator><creator>Wuelling, Manuela</creator><creator>Kornak, Uwe</creator><creator>Vortkamp, Andrea</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues</title><author>Ehlen, Harald WA ; Chinenkova, Milana ; Moser, Markus ; Munter, Hans‐Markus ; Krause, Yvonne ; Gross, Stefanie ; Brachvogel, Bent ; Wuelling, Manuela ; Kornak, Uwe ; Vortkamp, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4871-d99824b8f523bab49076a67518475fe39a1e0b06683ee4ca63f6b273bd107e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>ANOCTAMIN</topic><topic>Anoctamins</topic><topic>Biological Transport</topic><topic>Bone and Bones - metabolism</topic><topic>Bone matrix</topic><topic>Calcification, Physiologic</topic><topic>Calcium</topic><topic>Cells, Cultured</topic><topic>Chloride channels</topic><topic>Chondrocytes</topic><topic>Crystals</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryo, Mammalian - pathology</topic><topic>Embryogenesis</topic><topic>Extracellular matrix</topic><topic>Hydroxyapatite</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>MINERALIZATION</topic><topic>mRNA</topic><topic>OSTEOBLAST</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteoid</topic><topic>Periosteum</topic><topic>Phenotype</topic><topic>phosphatidylserine</topic><topic>Phosphatidylserines - metabolism</topic><topic>PHOSPHOLIPID SCRAMBLING</topic><topic>Phospholipid Transfer Proteins - deficiency</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Plasma membranes</topic><topic>SKELETAL DEVELOPMENT</topic><topic>Skeletogenesis</topic><topic>Skeleton</topic><topic>Skull - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehlen, Harald WA</creatorcontrib><creatorcontrib>Chinenkova, Milana</creatorcontrib><creatorcontrib>Moser, Markus</creatorcontrib><creatorcontrib>Munter, Hans‐Markus</creatorcontrib><creatorcontrib>Krause, Yvonne</creatorcontrib><creatorcontrib>Gross, Stefanie</creatorcontrib><creatorcontrib>Brachvogel, Bent</creatorcontrib><creatorcontrib>Wuelling, Manuela</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><creatorcontrib>Vortkamp, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehlen, Harald WA</au><au>Chinenkova, Milana</au><au>Moser, Markus</au><au>Munter, Hans‐Markus</au><au>Krause, Yvonne</au><au>Gross, Stefanie</au><au>Brachvogel, Bent</au><au>Wuelling, Manuela</au><au>Kornak, Uwe</au><au>Vortkamp, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2013-02</date><risdate>2013</risdate><volume>28</volume><issue>2</issue><spage>246</spage><epage>259</epage><pages>246-259</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp‐expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6−/− osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium‐dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite. © 2013 American Society for Bone and Mineral Research</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22936354</pmid><doi>10.1002/jbmr.1751</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-0431
ispartof Journal of bone and mineral research, 2013-02, Vol.28 (2), p.246-259
issn 0884-0431
1523-4681
language eng
recordid cdi_proquest_miscellaneous_1291618504
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Newborn
ANOCTAMIN
Anoctamins
Biological Transport
Bone and Bones - metabolism
Bone matrix
Calcification, Physiologic
Calcium
Cells, Cultured
Chloride channels
Chondrocytes
Crystals
Embryo, Mammalian - metabolism
Embryo, Mammalian - pathology
Embryogenesis
Extracellular matrix
Hydroxyapatite
Membrane proteins
Mice
Mice, Mutant Strains
MINERALIZATION
mRNA
OSTEOBLAST
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteoblasts - pathology
Osteoid
Periosteum
Phenotype
phosphatidylserine
Phosphatidylserines - metabolism
PHOSPHOLIPID SCRAMBLING
Phospholipid Transfer Proteins - deficiency
Phospholipid Transfer Proteins - metabolism
Plasma membranes
SKELETAL DEVELOPMENT
Skeletogenesis
Skeleton
Skull - pathology
title Inactivation of anoctamin‐6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20anoctamin%E2%80%906/Tmem16f,%20a%20regulator%20of%20phosphatidylserine%20scrambling%20in%20osteoblasts,%20leads%20to%20decreased%20mineral%20deposition%20in%20skeletal%20tissues&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Ehlen,%20Harald%20WA&rft.date=2013-02&rft.volume=28&rft.issue=2&rft.spage=246&rft.epage=259&rft.pages=246-259&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.1751&rft_dat=%3Cproquest_cross%3E1291618504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269478367&rft_id=info:pmid/22936354&rfr_iscdi=true