The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation
The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxificat...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2013-03, Vol.85 (6), p.705-717 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 6 |
container_start_page | 705 |
container_title | Biochemical pharmacology |
container_volume | 85 |
creator | Bryan, Holly K. Olayanju, Adedamola Goldring, Christopher E. Park, B. Kevin |
description | The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally. |
doi_str_mv | 10.1016/j.bcp.2012.11.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291615550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295212007575</els_id><sourcerecordid>1291615550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qVdlSfgAX6iOXpJ7J2sm2J4Toh0BwKEjcLMces15tPmpnQfz7Olra3jh5_OqZ0czD2DGIEgSoz5uytWOJArAEKHPyhi2gqasCV6p5yxZCCJVriQfsQ0qb-dsoeM8OsELIcb1g97dr4tfRI7e03XJHnnpLfDTT-sk8f-GXZEYoHI3UO-onbnrHi9D_Dzqya9OH1CU-eB7pYbc1Uxj6j-ydN9tERy_vIbv7dnF7_qO4uvn-8_zsqrBLFFORl5Cyks7VtadlI0zbSokKVSWcF62yHqtV41psEEAp55UVVS0Q8inOLpfVITvdzx3j8HtHadJdSPMtpqdhlzTgChRIKUVGYY_aOKQUyesxhs7EZw1Cz0L1RmehehaqAXROcs_Jy_hd25H71_HXYAY-7QFvBm0eYkj67leeILNtxGaFmfi6JyhreAwUdbJhtuxCJDtpN4RXFvgDDneNYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291615550</pqid></control><display><type>article</type><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</creator><creatorcontrib>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</creatorcontrib><description>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2012.11.016</identifier><identifier>PMID: 23219527</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; antioxidants ; cardiovascular diseases ; Cell defence ; cysteine ; epigenetics ; homeostasis ; Humans ; inflammation ; Intracellular Signaling Peptides and Proteins - physiology ; Keap1 ; Kelch-Like ECH-Associated Protein 1 ; methylation ; NF-E2-Related Factor 2 - physiology ; Nrf2 ; oxidation ; Oxidative stress ; pharmacology ; phosphorylation ; protein kinases ; Regulation ; transcription factors ; transporters</subject><ispartof>Biochemical pharmacology, 2013-03, Vol.85 (6), p.705-717</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</citedby><cites>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bcp.2012.11.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23219527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryan, Holly K.</creatorcontrib><creatorcontrib>Olayanju, Adedamola</creatorcontrib><creatorcontrib>Goldring, Christopher E.</creatorcontrib><creatorcontrib>Park, B. Kevin</creatorcontrib><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</description><subject>Animals</subject><subject>antioxidants</subject><subject>cardiovascular diseases</subject><subject>Cell defence</subject><subject>cysteine</subject><subject>epigenetics</subject><subject>homeostasis</subject><subject>Humans</subject><subject>inflammation</subject><subject>Intracellular Signaling Peptides and Proteins - physiology</subject><subject>Keap1</subject><subject>Kelch-Like ECH-Associated Protein 1</subject><subject>methylation</subject><subject>NF-E2-Related Factor 2 - physiology</subject><subject>Nrf2</subject><subject>oxidation</subject><subject>Oxidative stress</subject><subject>pharmacology</subject><subject>phosphorylation</subject><subject>protein kinases</subject><subject>Regulation</subject><subject>transcription factors</subject><subject>transporters</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq2qVdlSfgAX6iOXpJ7J2sm2J4Toh0BwKEjcLMces15tPmpnQfz7Olra3jh5_OqZ0czD2DGIEgSoz5uytWOJArAEKHPyhi2gqasCV6p5yxZCCJVriQfsQ0qb-dsoeM8OsELIcb1g97dr4tfRI7e03XJHnnpLfDTT-sk8f-GXZEYoHI3UO-onbnrHi9D_Dzqya9OH1CU-eB7pYbc1Uxj6j-ydN9tERy_vIbv7dnF7_qO4uvn-8_zsqrBLFFORl5Cyks7VtadlI0zbSokKVSWcF62yHqtV41psEEAp55UVVS0Q8inOLpfVITvdzx3j8HtHadJdSPMtpqdhlzTgChRIKUVGYY_aOKQUyesxhs7EZw1Cz0L1RmehehaqAXROcs_Jy_hd25H71_HXYAY-7QFvBm0eYkj67leeILNtxGaFmfi6JyhreAwUdbJhtuxCJDtpN4RXFvgDDneNYA</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Bryan, Holly K.</creator><creator>Olayanju, Adedamola</creator><creator>Goldring, Christopher E.</creator><creator>Park, B. Kevin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130315</creationdate><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><author>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antioxidants</topic><topic>cardiovascular diseases</topic><topic>Cell defence</topic><topic>cysteine</topic><topic>epigenetics</topic><topic>homeostasis</topic><topic>Humans</topic><topic>inflammation</topic><topic>Intracellular Signaling Peptides and Proteins - physiology</topic><topic>Keap1</topic><topic>Kelch-Like ECH-Associated Protein 1</topic><topic>methylation</topic><topic>NF-E2-Related Factor 2 - physiology</topic><topic>Nrf2</topic><topic>oxidation</topic><topic>Oxidative stress</topic><topic>pharmacology</topic><topic>phosphorylation</topic><topic>protein kinases</topic><topic>Regulation</topic><topic>transcription factors</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, Holly K.</creatorcontrib><creatorcontrib>Olayanju, Adedamola</creatorcontrib><creatorcontrib>Goldring, Christopher E.</creatorcontrib><creatorcontrib>Park, B. Kevin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, Holly K.</au><au>Olayanju, Adedamola</au><au>Goldring, Christopher E.</au><au>Park, B. Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2013-03-15</date><risdate>2013</risdate><volume>85</volume><issue>6</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23219527</pmid><doi>10.1016/j.bcp.2012.11.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2013-03, Vol.85 (6), p.705-717 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_proquest_miscellaneous_1291615550 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals antioxidants cardiovascular diseases Cell defence cysteine epigenetics homeostasis Humans inflammation Intracellular Signaling Peptides and Proteins - physiology Keap1 Kelch-Like ECH-Associated Protein 1 methylation NF-E2-Related Factor 2 - physiology Nrf2 oxidation Oxidative stress pharmacology phosphorylation protein kinases Regulation transcription factors transporters |
title | The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nrf2%20cell%20defence%20pathway:%20Keap1-dependent%20and%20-independent%20mechanisms%20of%20regulation&rft.jtitle=Biochemical%20pharmacology&rft.au=Bryan,%20Holly%20K.&rft.date=2013-03-15&rft.volume=85&rft.issue=6&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2012.11.016&rft_dat=%3Cproquest_cross%3E1291615550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291615550&rft_id=info:pmid/23219527&rft_els_id=S0006295212007575&rfr_iscdi=true |