The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation

The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2013-03, Vol.85 (6), p.705-717
Hauptverfasser: Bryan, Holly K., Olayanju, Adedamola, Goldring, Christopher E., Park, B. Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 6
container_start_page 705
container_title Biochemical pharmacology
container_volume 85
creator Bryan, Holly K.
Olayanju, Adedamola
Goldring, Christopher E.
Park, B. Kevin
description The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.
doi_str_mv 10.1016/j.bcp.2012.11.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291615550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295212007575</els_id><sourcerecordid>1291615550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qVdlSfgAX6iOXpJ7J2sm2J4Toh0BwKEjcLMces15tPmpnQfz7Olra3jh5_OqZ0czD2DGIEgSoz5uytWOJArAEKHPyhi2gqasCV6p5yxZCCJVriQfsQ0qb-dsoeM8OsELIcb1g97dr4tfRI7e03XJHnnpLfDTT-sk8f-GXZEYoHI3UO-onbnrHi9D_Dzqya9OH1CU-eB7pYbc1Uxj6j-ydN9tERy_vIbv7dnF7_qO4uvn-8_zsqrBLFFORl5Cyks7VtadlI0zbSokKVSWcF62yHqtV41psEEAp55UVVS0Q8inOLpfVITvdzx3j8HtHadJdSPMtpqdhlzTgChRIKUVGYY_aOKQUyesxhs7EZw1Cz0L1RmehehaqAXROcs_Jy_hd25H71_HXYAY-7QFvBm0eYkj67leeILNtxGaFmfi6JyhreAwUdbJhtuxCJDtpN4RXFvgDDneNYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291615550</pqid></control><display><type>article</type><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</creator><creatorcontrib>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</creatorcontrib><description>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/j.bcp.2012.11.016</identifier><identifier>PMID: 23219527</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; antioxidants ; cardiovascular diseases ; Cell defence ; cysteine ; epigenetics ; homeostasis ; Humans ; inflammation ; Intracellular Signaling Peptides and Proteins - physiology ; Keap1 ; Kelch-Like ECH-Associated Protein 1 ; methylation ; NF-E2-Related Factor 2 - physiology ; Nrf2 ; oxidation ; Oxidative stress ; pharmacology ; phosphorylation ; protein kinases ; Regulation ; transcription factors ; transporters</subject><ispartof>Biochemical pharmacology, 2013-03, Vol.85 (6), p.705-717</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</citedby><cites>FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bcp.2012.11.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23219527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryan, Holly K.</creatorcontrib><creatorcontrib>Olayanju, Adedamola</creatorcontrib><creatorcontrib>Goldring, Christopher E.</creatorcontrib><creatorcontrib>Park, B. Kevin</creatorcontrib><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</description><subject>Animals</subject><subject>antioxidants</subject><subject>cardiovascular diseases</subject><subject>Cell defence</subject><subject>cysteine</subject><subject>epigenetics</subject><subject>homeostasis</subject><subject>Humans</subject><subject>inflammation</subject><subject>Intracellular Signaling Peptides and Proteins - physiology</subject><subject>Keap1</subject><subject>Kelch-Like ECH-Associated Protein 1</subject><subject>methylation</subject><subject>NF-E2-Related Factor 2 - physiology</subject><subject>Nrf2</subject><subject>oxidation</subject><subject>Oxidative stress</subject><subject>pharmacology</subject><subject>phosphorylation</subject><subject>protein kinases</subject><subject>Regulation</subject><subject>transcription factors</subject><subject>transporters</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq2qVdlSfgAX6iOXpJ7J2sm2J4Toh0BwKEjcLMces15tPmpnQfz7Olra3jh5_OqZ0czD2DGIEgSoz5uytWOJArAEKHPyhi2gqasCV6p5yxZCCJVriQfsQ0qb-dsoeM8OsELIcb1g97dr4tfRI7e03XJHnnpLfDTT-sk8f-GXZEYoHI3UO-onbnrHi9D_Dzqya9OH1CU-eB7pYbc1Uxj6j-ydN9tERy_vIbv7dnF7_qO4uvn-8_zsqrBLFFORl5Cyks7VtadlI0zbSokKVSWcF62yHqtV41psEEAp55UVVS0Q8inOLpfVITvdzx3j8HtHadJdSPMtpqdhlzTgChRIKUVGYY_aOKQUyesxhs7EZw1Cz0L1RmehehaqAXROcs_Jy_hd25H71_HXYAY-7QFvBm0eYkj67leeILNtxGaFmfi6JyhreAwUdbJhtuxCJDtpN4RXFvgDDneNYA</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Bryan, Holly K.</creator><creator>Olayanju, Adedamola</creator><creator>Goldring, Christopher E.</creator><creator>Park, B. Kevin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130315</creationdate><title>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</title><author>Bryan, Holly K. ; Olayanju, Adedamola ; Goldring, Christopher E. ; Park, B. Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-5275535dd77fe480abb55262630df0b6cf2398db2821166df6c037021068dc443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antioxidants</topic><topic>cardiovascular diseases</topic><topic>Cell defence</topic><topic>cysteine</topic><topic>epigenetics</topic><topic>homeostasis</topic><topic>Humans</topic><topic>inflammation</topic><topic>Intracellular Signaling Peptides and Proteins - physiology</topic><topic>Keap1</topic><topic>Kelch-Like ECH-Associated Protein 1</topic><topic>methylation</topic><topic>NF-E2-Related Factor 2 - physiology</topic><topic>Nrf2</topic><topic>oxidation</topic><topic>Oxidative stress</topic><topic>pharmacology</topic><topic>phosphorylation</topic><topic>protein kinases</topic><topic>Regulation</topic><topic>transcription factors</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, Holly K.</creatorcontrib><creatorcontrib>Olayanju, Adedamola</creatorcontrib><creatorcontrib>Goldring, Christopher E.</creatorcontrib><creatorcontrib>Park, B. Kevin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, Holly K.</au><au>Olayanju, Adedamola</au><au>Goldring, Christopher E.</au><au>Park, B. Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2013-03-15</date><risdate>2013</risdate><volume>85</volume><issue>6</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><abstract>The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23219527</pmid><doi>10.1016/j.bcp.2012.11.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2013-03, Vol.85 (6), p.705-717
issn 0006-2952
1873-2968
language eng
recordid cdi_proquest_miscellaneous_1291615550
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
antioxidants
cardiovascular diseases
Cell defence
cysteine
epigenetics
homeostasis
Humans
inflammation
Intracellular Signaling Peptides and Proteins - physiology
Keap1
Kelch-Like ECH-Associated Protein 1
methylation
NF-E2-Related Factor 2 - physiology
Nrf2
oxidation
Oxidative stress
pharmacology
phosphorylation
protein kinases
Regulation
transcription factors
transporters
title The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nrf2%20cell%20defence%20pathway:%20Keap1-dependent%20and%20-independent%20mechanisms%20of%20regulation&rft.jtitle=Biochemical%20pharmacology&rft.au=Bryan,%20Holly%20K.&rft.date=2013-03-15&rft.volume=85&rft.issue=6&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0006-2952&rft.eissn=1873-2968&rft_id=info:doi/10.1016/j.bcp.2012.11.016&rft_dat=%3Cproquest_cross%3E1291615550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291615550&rft_id=info:pmid/23219527&rft_els_id=S0006295212007575&rfr_iscdi=true