Role of Microglia and Astrocyte in Central Pain Syndrome Following Electrolytic Lesion at the Spinothalamic Tract in Rats
Central pain syndrome (CPS) is a debilitating state and one of the consequences of spinal cord injury in patients. Many pathophysiological aspects of CPS are not well documented. Spinal glia activation has been identified as a key factor in the sensory component of chronic pain. In this study, the r...
Gespeichert in:
Veröffentlicht in: | Journal of molecular neuroscience 2013-03, Vol.49 (3), p.470-479 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Central pain syndrome (CPS) is a debilitating state and one of the consequences of spinal cord injury in patients. Many pathophysiological aspects of CPS are not well documented. Spinal glia activation has been identified as a key factor in the sensory component of chronic pain. In this study, the role of glial subtypes in the process of CPS induced by unilateral electrolytic lesion of spinothalamic tract (STT) is investigated. Male rats received a laminectomy at T8–T9 and then unilateral electrolytic lesion centered on the STT. Thermal and mechanical thresholds as well as locomotor function were measured on days 0, 3, 7, 14, 21, and 28 post-injuries by tail flick, von Frey filament, and open field tests, respectively. To investigate the spinal glial activation following denervation in STT-lesioned groups, Iba1 and GFAP were detected by immunohistochemistry and Western blotting at the same time points. Data showed that STT lesion significantly decreased thermal pain at day 3 in comparison with sham groups. Significant bilateral allodynia appeared in hind paws at day 14 after spinal cord injury and continued to day 28 (
P
|
---|---|
ISSN: | 0895-8696 1559-1166 |
DOI: | 10.1007/s12031-012-9840-3 |