Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting
In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enabl...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2013, Vol.24 (1), p.241-255 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 24 |
creator | Flege, Christian Vogt, Felix Höges, Simon Jauer, Lucas Borinski, Mauricio Schulte, Vera A. Hoffmann, Rainer Poprawe, Reinhart Meiners, Wilhelm Jobmann, Monika Wissenbach, Konrad Blindt, Rüdiger |
description | In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-
l
-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications. |
doi_str_mv | 10.1007/s10856-012-4779-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291612465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860232851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</originalsourceid><addsrcrecordid>eNqN0UuLFDEQB_Agiju7-gG8SECEvbTm2UmOsj5hwYuem-p09dhLutMmmYWZT2-GGR8Igqcc6leVSv6EPOPsFWfMvM6cWd02jItGGeOawwOy4drIRllpH5INc9o0Skt2QS5zvmOMKaf1Y3IhJNPSMrsh-S3eY4jrjEuhsAzUf4MEvmCaDlCmuNA4UqA-prhA2tM1hn2o9clT8NNAczk2rimWWPYr0i0umKDgQPs9zRiw0nukATImOmMo07J9Qh6NEDI-PZ9X5Ov7d19uPja3nz98unlz23gldWkUtCBAmsFozrwbneVW9GD4aHBQBoURikun7SCUESPjCNg7Jm2P0LMR5BW5Ps2t633fYS7dPGWPIcCCcZc7LhxvuVCt_g9qpNRKcFfpi7_oXdylpT6kqtYIIZ09Kn5SPsWcE47dmqa5_mDHWXcMrzuF19XwumN43aH2PD9P3vUzDr86fqZVwcszgOwhjAkWP-XfznDruDTViZPLtbRsMf2x4j9v_wHOM7Mf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267223989</pqid></control><display><type>article</type><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</creator><creatorcontrib>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</creatorcontrib><description>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-
l
-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-012-4779-z</identifier><identifier>PMID: 23053808</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biocompatibility ; Biocompatible Materials ; Biodegradable materials ; Biological and medical sciences ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Chromatography, Gel ; Composites ; Coronary Stenosis - prevention & control ; Glass ; Humans ; Lactic Acid ; Lasers ; Materials Science ; Medical sciences ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Muscle, Smooth, Vascular - cytology ; Natural Materials ; Polyesters ; Polymer Sciences ; Polymers ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Regenerative Medicine/Tissue Engineering ; Stents ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Thin Films ; Thrombosis</subject><ispartof>Journal of materials science. Materials in medicine, 2013, Vol.24 (1), p.241-255</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</citedby><cites>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-012-4779-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-012-4779-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27189137$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23053808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flege, Christian</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Höges, Simon</creatorcontrib><creatorcontrib>Jauer, Lucas</creatorcontrib><creatorcontrib>Borinski, Mauricio</creatorcontrib><creatorcontrib>Schulte, Vera A.</creatorcontrib><creatorcontrib>Hoffmann, Rainer</creatorcontrib><creatorcontrib>Poprawe, Reinhart</creatorcontrib><creatorcontrib>Meiners, Wilhelm</creatorcontrib><creatorcontrib>Jobmann, Monika</creatorcontrib><creatorcontrib>Wissenbach, Konrad</creatorcontrib><creatorcontrib>Blindt, Rüdiger</creatorcontrib><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-
l
-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biodegradable materials</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, Gel</subject><subject>Composites</subject><subject>Coronary Stenosis - prevention & control</subject><subject>Glass</subject><subject>Humans</subject><subject>Lactic Acid</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Natural Materials</subject><subject>Polyesters</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stents</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Thrombosis</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0UuLFDEQB_Agiju7-gG8SECEvbTm2UmOsj5hwYuem-p09dhLutMmmYWZT2-GGR8Igqcc6leVSv6EPOPsFWfMvM6cWd02jItGGeOawwOy4drIRllpH5INc9o0Skt2QS5zvmOMKaf1Y3IhJNPSMrsh-S3eY4jrjEuhsAzUf4MEvmCaDlCmuNA4UqA-prhA2tM1hn2o9clT8NNAczk2rimWWPYr0i0umKDgQPs9zRiw0nukATImOmMo07J9Qh6NEDI-PZ9X5Ov7d19uPja3nz98unlz23gldWkUtCBAmsFozrwbneVW9GD4aHBQBoURikun7SCUESPjCNg7Jm2P0LMR5BW5Ps2t633fYS7dPGWPIcCCcZc7LhxvuVCt_g9qpNRKcFfpi7_oXdylpT6kqtYIIZ09Kn5SPsWcE47dmqa5_mDHWXcMrzuF19XwumN43aH2PD9P3vUzDr86fqZVwcszgOwhjAkWP-XfznDruDTViZPLtbRsMf2x4j9v_wHOM7Mf</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Flege, Christian</creator><creator>Vogt, Felix</creator><creator>Höges, Simon</creator><creator>Jauer, Lucas</creator><creator>Borinski, Mauricio</creator><creator>Schulte, Vera A.</creator><creator>Hoffmann, Rainer</creator><creator>Poprawe, Reinhart</creator><creator>Meiners, Wilhelm</creator><creator>Jobmann, Monika</creator><creator>Wissenbach, Konrad</creator><creator>Blindt, Rüdiger</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><author>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biodegradable materials</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, Gel</topic><topic>Composites</topic><topic>Coronary Stenosis - prevention & control</topic><topic>Glass</topic><topic>Humans</topic><topic>Lactic Acid</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Natural Materials</topic><topic>Polyesters</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stents</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flege, Christian</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Höges, Simon</creatorcontrib><creatorcontrib>Jauer, Lucas</creatorcontrib><creatorcontrib>Borinski, Mauricio</creatorcontrib><creatorcontrib>Schulte, Vera A.</creatorcontrib><creatorcontrib>Hoffmann, Rainer</creatorcontrib><creatorcontrib>Poprawe, Reinhart</creatorcontrib><creatorcontrib>Meiners, Wilhelm</creatorcontrib><creatorcontrib>Jobmann, Monika</creatorcontrib><creatorcontrib>Wissenbach, Konrad</creatorcontrib><creatorcontrib>Blindt, Rüdiger</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flege, Christian</au><au>Vogt, Felix</au><au>Höges, Simon</au><au>Jauer, Lucas</au><au>Borinski, Mauricio</au><au>Schulte, Vera A.</au><au>Hoffmann, Rainer</au><au>Poprawe, Reinhart</au><au>Meiners, Wilhelm</au><au>Jobmann, Monika</au><au>Wissenbach, Konrad</au><au>Blindt, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2013</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>241</spage><epage>255</epage><pages>241-255</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-
l
-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23053808</pmid><doi>10.1007/s10856-012-4779-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2013, Vol.24 (1), p.241-255 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_1291612465 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biocompatibility Biocompatible Materials Biodegradable materials Biological and medical sciences Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Cells, Cultured Ceramics Chemistry and Materials Science Chromatography, Gel Composites Coronary Stenosis - prevention & control Glass Humans Lactic Acid Lasers Materials Science Medical sciences Microscopy, Electron, Scanning Microscopy, Fluorescence Muscle, Smooth, Vascular - cytology Natural Materials Polyesters Polymer Sciences Polymers Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Regenerative Medicine/Tissue Engineering Stents Surfaces and Interfaces Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Thin Films Thrombosis |
title | Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20characterization%20of%20a%20coronary%20polylactic%20acid%20stent%20prototype%20generated%20by%20selective%20laser%20melting&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Flege,%20Christian&rft.date=2013&rft.volume=24&rft.issue=1&rft.spage=241&rft.epage=255&rft.pages=241-255&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-012-4779-z&rft_dat=%3Cproquest_cross%3E2860232851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267223989&rft_id=info:pmid/23053808&rfr_iscdi=true |