Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting

In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2013, Vol.24 (1), p.241-255
Hauptverfasser: Flege, Christian, Vogt, Felix, Höges, Simon, Jauer, Lucas, Borinski, Mauricio, Schulte, Vera A., Hoffmann, Rainer, Poprawe, Reinhart, Meiners, Wilhelm, Jobmann, Monika, Wissenbach, Konrad, Blindt, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 241
container_title Journal of materials science. Materials in medicine
container_volume 24
creator Flege, Christian
Vogt, Felix
Höges, Simon
Jauer, Lucas
Borinski, Mauricio
Schulte, Vera A.
Hoffmann, Rainer
Poprawe, Reinhart
Meiners, Wilhelm
Jobmann, Monika
Wissenbach, Konrad
Blindt, Rüdiger
description In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly- l -lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.
doi_str_mv 10.1007/s10856-012-4779-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291612465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860232851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</originalsourceid><addsrcrecordid>eNqN0UuLFDEQB_Agiju7-gG8SECEvbTm2UmOsj5hwYuem-p09dhLutMmmYWZT2-GGR8Igqcc6leVSv6EPOPsFWfMvM6cWd02jItGGeOawwOy4drIRllpH5INc9o0Skt2QS5zvmOMKaf1Y3IhJNPSMrsh-S3eY4jrjEuhsAzUf4MEvmCaDlCmuNA4UqA-prhA2tM1hn2o9clT8NNAczk2rimWWPYr0i0umKDgQPs9zRiw0nukATImOmMo07J9Qh6NEDI-PZ9X5Ov7d19uPja3nz98unlz23gldWkUtCBAmsFozrwbneVW9GD4aHBQBoURikun7SCUESPjCNg7Jm2P0LMR5BW5Ps2t633fYS7dPGWPIcCCcZc7LhxvuVCt_g9qpNRKcFfpi7_oXdylpT6kqtYIIZ09Kn5SPsWcE47dmqa5_mDHWXcMrzuF19XwumN43aH2PD9P3vUzDr86fqZVwcszgOwhjAkWP-XfznDruDTViZPLtbRsMf2x4j9v_wHOM7Mf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267223989</pqid></control><display><type>article</type><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</creator><creatorcontrib>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</creatorcontrib><description>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly- l -lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-012-4779-z</identifier><identifier>PMID: 23053808</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biocompatibility ; Biocompatible Materials ; Biodegradable materials ; Biological and medical sciences ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Chromatography, Gel ; Composites ; Coronary Stenosis - prevention &amp; control ; Glass ; Humans ; Lactic Acid ; Lasers ; Materials Science ; Medical sciences ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Muscle, Smooth, Vascular - cytology ; Natural Materials ; Polyesters ; Polymer Sciences ; Polymers ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Regenerative Medicine/Tissue Engineering ; Stents ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Thin Films ; Thrombosis</subject><ispartof>Journal of materials science. Materials in medicine, 2013, Vol.24 (1), p.241-255</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</citedby><cites>FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-012-4779-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-012-4779-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27189137$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23053808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flege, Christian</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Höges, Simon</creatorcontrib><creatorcontrib>Jauer, Lucas</creatorcontrib><creatorcontrib>Borinski, Mauricio</creatorcontrib><creatorcontrib>Schulte, Vera A.</creatorcontrib><creatorcontrib>Hoffmann, Rainer</creatorcontrib><creatorcontrib>Poprawe, Reinhart</creatorcontrib><creatorcontrib>Meiners, Wilhelm</creatorcontrib><creatorcontrib>Jobmann, Monika</creatorcontrib><creatorcontrib>Wissenbach, Konrad</creatorcontrib><creatorcontrib>Blindt, Rüdiger</creatorcontrib><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly- l -lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biodegradable materials</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, Gel</subject><subject>Composites</subject><subject>Coronary Stenosis - prevention &amp; control</subject><subject>Glass</subject><subject>Humans</subject><subject>Lactic Acid</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Natural Materials</subject><subject>Polyesters</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stents</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Thrombosis</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0UuLFDEQB_Agiju7-gG8SECEvbTm2UmOsj5hwYuem-p09dhLutMmmYWZT2-GGR8Igqcc6leVSv6EPOPsFWfMvM6cWd02jItGGeOawwOy4drIRllpH5INc9o0Skt2QS5zvmOMKaf1Y3IhJNPSMrsh-S3eY4jrjEuhsAzUf4MEvmCaDlCmuNA4UqA-prhA2tM1hn2o9clT8NNAczk2rimWWPYr0i0umKDgQPs9zRiw0nukATImOmMo07J9Qh6NEDI-PZ9X5Ov7d19uPja3nz98unlz23gldWkUtCBAmsFozrwbneVW9GD4aHBQBoURikun7SCUESPjCNg7Jm2P0LMR5BW5Ps2t633fYS7dPGWPIcCCcZc7LhxvuVCt_g9qpNRKcFfpi7_oXdylpT6kqtYIIZ09Kn5SPsWcE47dmqa5_mDHWXcMrzuF19XwumN43aH2PD9P3vUzDr86fqZVwcszgOwhjAkWP-XfznDruDTViZPLtbRsMf2x4j9v_wHOM7Mf</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Flege, Christian</creator><creator>Vogt, Felix</creator><creator>Höges, Simon</creator><creator>Jauer, Lucas</creator><creator>Borinski, Mauricio</creator><creator>Schulte, Vera A.</creator><creator>Hoffmann, Rainer</creator><creator>Poprawe, Reinhart</creator><creator>Meiners, Wilhelm</creator><creator>Jobmann, Monika</creator><creator>Wissenbach, Konrad</creator><creator>Blindt, Rüdiger</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</title><author>Flege, Christian ; Vogt, Felix ; Höges, Simon ; Jauer, Lucas ; Borinski, Mauricio ; Schulte, Vera A. ; Hoffmann, Rainer ; Poprawe, Reinhart ; Meiners, Wilhelm ; Jobmann, Monika ; Wissenbach, Konrad ; Blindt, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-4a6a2a37d7510c9f98182ba71f7ed47e272413958d2472f01eaeb9038beab0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biodegradable materials</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, Gel</topic><topic>Composites</topic><topic>Coronary Stenosis - prevention &amp; control</topic><topic>Glass</topic><topic>Humans</topic><topic>Lactic Acid</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Natural Materials</topic><topic>Polyesters</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stents</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flege, Christian</creatorcontrib><creatorcontrib>Vogt, Felix</creatorcontrib><creatorcontrib>Höges, Simon</creatorcontrib><creatorcontrib>Jauer, Lucas</creatorcontrib><creatorcontrib>Borinski, Mauricio</creatorcontrib><creatorcontrib>Schulte, Vera A.</creatorcontrib><creatorcontrib>Hoffmann, Rainer</creatorcontrib><creatorcontrib>Poprawe, Reinhart</creatorcontrib><creatorcontrib>Meiners, Wilhelm</creatorcontrib><creatorcontrib>Jobmann, Monika</creatorcontrib><creatorcontrib>Wissenbach, Konrad</creatorcontrib><creatorcontrib>Blindt, Rüdiger</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flege, Christian</au><au>Vogt, Felix</au><au>Höges, Simon</au><au>Jauer, Lucas</au><au>Borinski, Mauricio</au><au>Schulte, Vera A.</au><au>Hoffmann, Rainer</au><au>Poprawe, Reinhart</au><au>Meiners, Wilhelm</au><au>Jobmann, Monika</au><au>Wissenbach, Konrad</au><au>Blindt, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2013</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>241</spage><epage>255</epage><pages>241-255</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly- l -lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23053808</pmid><doi>10.1007/s10856-012-4779-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2013, Vol.24 (1), p.241-255
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1291612465
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biocompatibility
Biocompatible Materials
Biodegradable materials
Biological and medical sciences
Biomaterials
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical materials
Cells, Cultured
Ceramics
Chemistry and Materials Science
Chromatography, Gel
Composites
Coronary Stenosis - prevention & control
Glass
Humans
Lactic Acid
Lasers
Materials Science
Medical sciences
Microscopy, Electron, Scanning
Microscopy, Fluorescence
Muscle, Smooth, Vascular - cytology
Natural Materials
Polyesters
Polymer Sciences
Polymers
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Regenerative Medicine/Tissue Engineering
Stents
Surfaces and Interfaces
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Thin Films
Thrombosis
title Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20characterization%20of%20a%20coronary%20polylactic%20acid%20stent%20prototype%20generated%20by%20selective%20laser%20melting&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Flege,%20Christian&rft.date=2013&rft.volume=24&rft.issue=1&rft.spage=241&rft.epage=255&rft.pages=241-255&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-012-4779-z&rft_dat=%3Cproquest_cross%3E2860232851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267223989&rft_id=info:pmid/23053808&rfr_iscdi=true