DTI and Structural MRI Classification in Alzheimer’s Disease

In this paper, we propose a fully automated method to individually classify patients with Alzheimer's disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in molecular imaging 2012-04, Vol.2 (2), p.12-20
Hauptverfasser: Mesrob, Lilia, Sarazin, Marie, Hahn-Barma, Valerie, Souza, Leonardo Cruz de, Dubois, Bruno, Gallinari, Patrick, Kinkingnéhun, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2
container_start_page 12
container_title Advances in molecular imaging
container_volume 2
creator Mesrob, Lilia
Sarazin, Marie
Hahn-Barma, Valerie
Souza, Leonardo Cruz de
Dubois, Bruno
Gallinari, Patrick
Kinkingnéhun, Serge
description In this paper, we propose a fully automated method to individually classify patients with Alzheimer's disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach relies on whole-brain parcellation into 73 anatomical regions and the extraction of multimodal characteristics in these regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support Vector Machine (SVM) for individual classification. Fifteen AD patients and 16 elderly controls were discriminated using mean diffusivity alone, combination of mean diffusivity and fractional anisotropy, and multimodal measures in the 73 ROIs and the overall accuracy obtained was 65.2%, 68.6% and 72% respectively. Overall accuracy reached 99% in multimodal measures when relevant regions were selected.
doi_str_mv 10.4236/ami.2012.22003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291608008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291608008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1573-4e1e3527db6cec02a38fcd082ccf7964c6b5078547e3da90ccb5715d569e9bca3</originalsourceid><addsrcrecordid>eNo9kLtOwzAYhS0EElXpyuyRJcGX2E4WpKrlUqkICcpsOX_-CKNcip0MMPEavB5PQksRZzln-HSGj5BzztJMSH3pWp8KxkUqBGPyiEwE1zzRRonj_y3yUzKL8ZXtopRUmZqQq-VmRV1X0achjDCMwTX0_nFFF42L0dce3OD7jvqOzpuPF_Qthu_Pr0iXPqKLeEZOatdEnP31lDzfXG8Wd8n64Xa1mK8T4MrIJEOOUglTlRoQmHAyr6FiuQCoTaEz0KViJleZQVm5ggGUynBVKV1gUYKTU3Jx-N2G_m3EONjWR8CmcR32Y7RcFFyznLF8h6YHFEIfY8DaboNvXXi3nNm9K7tzZfeu7K8r-QOoyVw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291608008</pqid></control><display><type>article</type><title>DTI and Structural MRI Classification in Alzheimer’s Disease</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mesrob, Lilia ; Sarazin, Marie ; Hahn-Barma, Valerie ; Souza, Leonardo Cruz de ; Dubois, Bruno ; Gallinari, Patrick ; Kinkingnéhun, Serge</creator><creatorcontrib>Mesrob, Lilia ; Sarazin, Marie ; Hahn-Barma, Valerie ; Souza, Leonardo Cruz de ; Dubois, Bruno ; Gallinari, Patrick ; Kinkingnéhun, Serge</creatorcontrib><description>In this paper, we propose a fully automated method to individually classify patients with Alzheimer's disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach relies on whole-brain parcellation into 73 anatomical regions and the extraction of multimodal characteristics in these regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support Vector Machine (SVM) for individual classification. Fifteen AD patients and 16 elderly controls were discriminated using mean diffusivity alone, combination of mean diffusivity and fractional anisotropy, and multimodal measures in the 73 ROIs and the overall accuracy obtained was 65.2%, 68.6% and 72% respectively. Overall accuracy reached 99% in multimodal measures when relevant regions were selected.</description><identifier>ISSN: 2161-6728</identifier><identifier>EISSN: 2161-6752</identifier><identifier>DOI: 10.4236/ami.2012.22003</identifier><language>eng</language><subject>Alzheimer's disease</subject><ispartof>Advances in molecular imaging, 2012-04, Vol.2 (2), p.12-20</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1573-4e1e3527db6cec02a38fcd082ccf7964c6b5078547e3da90ccb5715d569e9bca3</citedby><cites>FETCH-LOGICAL-c1573-4e1e3527db6cec02a38fcd082ccf7964c6b5078547e3da90ccb5715d569e9bca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Mesrob, Lilia</creatorcontrib><creatorcontrib>Sarazin, Marie</creatorcontrib><creatorcontrib>Hahn-Barma, Valerie</creatorcontrib><creatorcontrib>Souza, Leonardo Cruz de</creatorcontrib><creatorcontrib>Dubois, Bruno</creatorcontrib><creatorcontrib>Gallinari, Patrick</creatorcontrib><creatorcontrib>Kinkingnéhun, Serge</creatorcontrib><title>DTI and Structural MRI Classification in Alzheimer’s Disease</title><title>Advances in molecular imaging</title><description>In this paper, we propose a fully automated method to individually classify patients with Alzheimer's disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach relies on whole-brain parcellation into 73 anatomical regions and the extraction of multimodal characteristics in these regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support Vector Machine (SVM) for individual classification. Fifteen AD patients and 16 elderly controls were discriminated using mean diffusivity alone, combination of mean diffusivity and fractional anisotropy, and multimodal measures in the 73 ROIs and the overall accuracy obtained was 65.2%, 68.6% and 72% respectively. Overall accuracy reached 99% in multimodal measures when relevant regions were selected.</description><subject>Alzheimer's disease</subject><issn>2161-6728</issn><issn>2161-6752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAYhS0EElXpyuyRJcGX2E4WpKrlUqkICcpsOX_-CKNcip0MMPEavB5PQksRZzln-HSGj5BzztJMSH3pWp8KxkUqBGPyiEwE1zzRRonj_y3yUzKL8ZXtopRUmZqQq-VmRV1X0achjDCMwTX0_nFFF42L0dce3OD7jvqOzpuPF_Qthu_Pr0iXPqKLeEZOatdEnP31lDzfXG8Wd8n64Xa1mK8T4MrIJEOOUglTlRoQmHAyr6FiuQCoTaEz0KViJleZQVm5ggGUynBVKV1gUYKTU3Jx-N2G_m3EONjWR8CmcR32Y7RcFFyznLF8h6YHFEIfY8DaboNvXXi3nNm9K7tzZfeu7K8r-QOoyVw4</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Mesrob, Lilia</creator><creator>Sarazin, Marie</creator><creator>Hahn-Barma, Valerie</creator><creator>Souza, Leonardo Cruz de</creator><creator>Dubois, Bruno</creator><creator>Gallinari, Patrick</creator><creator>Kinkingnéhun, Serge</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>20120401</creationdate><title>DTI and Structural MRI Classification in Alzheimer’s Disease</title><author>Mesrob, Lilia ; Sarazin, Marie ; Hahn-Barma, Valerie ; Souza, Leonardo Cruz de ; Dubois, Bruno ; Gallinari, Patrick ; Kinkingnéhun, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1573-4e1e3527db6cec02a38fcd082ccf7964c6b5078547e3da90ccb5715d569e9bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alzheimer's disease</topic><toplevel>online_resources</toplevel><creatorcontrib>Mesrob, Lilia</creatorcontrib><creatorcontrib>Sarazin, Marie</creatorcontrib><creatorcontrib>Hahn-Barma, Valerie</creatorcontrib><creatorcontrib>Souza, Leonardo Cruz de</creatorcontrib><creatorcontrib>Dubois, Bruno</creatorcontrib><creatorcontrib>Gallinari, Patrick</creatorcontrib><creatorcontrib>Kinkingnéhun, Serge</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Advances in molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesrob, Lilia</au><au>Sarazin, Marie</au><au>Hahn-Barma, Valerie</au><au>Souza, Leonardo Cruz de</au><au>Dubois, Bruno</au><au>Gallinari, Patrick</au><au>Kinkingnéhun, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DTI and Structural MRI Classification in Alzheimer’s Disease</atitle><jtitle>Advances in molecular imaging</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>2</volume><issue>2</issue><spage>12</spage><epage>20</epage><pages>12-20</pages><issn>2161-6728</issn><eissn>2161-6752</eissn><abstract>In this paper, we propose a fully automated method to individually classify patients with Alzheimer's disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach relies on whole-brain parcellation into 73 anatomical regions and the extraction of multimodal characteristics in these regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support Vector Machine (SVM) for individual classification. Fifteen AD patients and 16 elderly controls were discriminated using mean diffusivity alone, combination of mean diffusivity and fractional anisotropy, and multimodal measures in the 73 ROIs and the overall accuracy obtained was 65.2%, 68.6% and 72% respectively. Overall accuracy reached 99% in multimodal measures when relevant regions were selected.</abstract><doi>10.4236/ami.2012.22003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-6728
ispartof Advances in molecular imaging, 2012-04, Vol.2 (2), p.12-20
issn 2161-6728
2161-6752
language eng
recordid cdi_proquest_miscellaneous_1291608008
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Alzheimer's disease
title DTI and Structural MRI Classification in Alzheimer’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DTI%20and%20Structural%20MRI%20Classification%20in%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Advances%20in%20molecular%20imaging&rft.au=Mesrob,%20Lilia&rft.date=2012-04-01&rft.volume=2&rft.issue=2&rft.spage=12&rft.epage=20&rft.pages=12-20&rft.issn=2161-6728&rft.eissn=2161-6752&rft_id=info:doi/10.4236/ami.2012.22003&rft_dat=%3Cproquest_cross%3E1291608008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291608008&rft_id=info:pmid/&rfr_iscdi=true