Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum

Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2013-02, Vol.97 (4), p.1679-1687
Hauptverfasser: Uhde, Andreas, Youn, Jung-Won, Maeda, Tomoya, Clermont, Lina, Matano, Christian, Krämer, Reinhard, Wendisch, Volker F., Seibold, Gerd M., Marin, Kay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1687
container_issue 4
container_start_page 1679
container_title Applied microbiology and biotechnology
container_volume 97
creator Uhde, Andreas
Youn, Jung-Won
Maeda, Tomoya
Clermont, Lina
Matano, Christian
Krämer, Reinhard
Wendisch, Volker F.
Seibold, Gerd M.
Marin, Kay
description Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS Glc transport system to be responsible for glucosamine uptake in C. glutamicum . The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid l -lysine and the diamine putrescine from glucosamine was demonstrated.
doi_str_mv 10.1007/s00253-012-4313-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291606007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337618138</galeid><sourcerecordid>A337618138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-6b269ab3323551b596069059d3605cbd081aa88bb7f38ab558809347ec827ac03</originalsourceid><addsrcrecordid>eNqNkk1rFTEYhYMo9lr9AW5kwI0uUvMxySTLctFaKCh-rEOSyQxTZpKaTKD9977DrR9XFCSLQPKcQ96Tg9BzSs4oId2bQggTHBPKcMspx-oB2tGWM0wkbR-iHaGdwJ3Q6gQ9KeWaAKikfIxOGFOiVbrdoY8Xc_Wp2GWKobGl8Ta7FJuSavahGVJutqvUWD_1-Canvvopjs0-5bsYnPVryFNdmnGuK4C-Lk_Ro8HOJTy730_R13dvv-zf46sPF5f78yvspehWLB2T2jrOGReCOqElkZoI3XNJhHc9UdRapZzrBq6sE0IponnbBa9YZz3hp-jVwRce9a2GspplKj7Ms40h1WIo0xQ8Iab_QFW70S0D9OUf6DUkEWGQjeKCQbr6FzXaOZgpDmnN1m-m5pzzTlJFuQLq7C8UrD5AUimGYYLzI8HrIwEwa7hdR1tLMZefPx2z9MD6nErJYTA3eVpsvjOUmK0c5lAOA39utnKYTfPifrjqltD_VPxoAwDsABS4imPIv03_T9fvSNW_3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283524329</pqid></control><display><type>article</type><title>Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Uhde, Andreas ; Youn, Jung-Won ; Maeda, Tomoya ; Clermont, Lina ; Matano, Christian ; Krämer, Reinhard ; Wendisch, Volker F. ; Seibold, Gerd M. ; Marin, Kay</creator><creatorcontrib>Uhde, Andreas ; Youn, Jung-Won ; Maeda, Tomoya ; Clermont, Lina ; Matano, Christian ; Krämer, Reinhard ; Wendisch, Volker F. ; Seibold, Gerd M. ; Marin, Kay</creatorcontrib><description>Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS Glc transport system to be responsible for glucosamine uptake in C. glutamicum . The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid l -lysine and the diamine putrescine from glucosamine was demonstrated.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-012-4313-8</identifier><identifier>PMID: 22854894</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aldose-Ketose Isomerases - genetics ; Aldose-Ketose Isomerases - metabolism ; Amino acids ; Amino Acids - biosynthesis ; Applied Microbial and Cell Physiology ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Carbohydrates ; Carbon ; Carbon - metabolism ; Carbon sources ; Cloning ; Corynebacteria ; Corynebacterium glutamicum ; Corynebacterium glutamicum - enzymology ; Corynebacterium glutamicum - genetics ; Corynebacterium glutamicum - growth &amp; development ; Corynebacterium glutamicum - metabolism ; E coli ; Genes ; Glucosamine ; Glucosamine - metabolism ; Glucose ; Glucose metabolism ; Life Sciences ; Metabolism ; Microbial Genetics and Genomics ; Microbiological research ; Microbiology ; Mutants ; Mutation ; Nitrogen ; Physiological aspects ; Plasmids ; Point Mutation ; Prokaryotes ; Promoter Regions, Genetic ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2013-02, Vol.97 (4), p.1679-1687</ispartof><rights>Springer-Verlag 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-6b269ab3323551b596069059d3605cbd081aa88bb7f38ab558809347ec827ac03</citedby><cites>FETCH-LOGICAL-c657t-6b269ab3323551b596069059d3605cbd081aa88bb7f38ab558809347ec827ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-012-4313-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-012-4313-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22854894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uhde, Andreas</creatorcontrib><creatorcontrib>Youn, Jung-Won</creatorcontrib><creatorcontrib>Maeda, Tomoya</creatorcontrib><creatorcontrib>Clermont, Lina</creatorcontrib><creatorcontrib>Matano, Christian</creatorcontrib><creatorcontrib>Krämer, Reinhard</creatorcontrib><creatorcontrib>Wendisch, Volker F.</creatorcontrib><creatorcontrib>Seibold, Gerd M.</creatorcontrib><creatorcontrib>Marin, Kay</creatorcontrib><title>Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS Glc transport system to be responsible for glucosamine uptake in C. glutamicum . The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid l -lysine and the diamine putrescine from glucosamine was demonstrated.</description><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Aldose-Ketose Isomerases - metabolism</subject><subject>Amino acids</subject><subject>Amino Acids - biosynthesis</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon sources</subject><subject>Cloning</subject><subject>Corynebacteria</subject><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - enzymology</subject><subject>Corynebacterium glutamicum - genetics</subject><subject>Corynebacterium glutamicum - growth &amp; development</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>E coli</subject><subject>Genes</subject><subject>Glucosamine</subject><subject>Glucosamine - metabolism</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nitrogen</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Point Mutation</subject><subject>Prokaryotes</subject><subject>Promoter Regions, Genetic</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1rFTEYhYMo9lr9AW5kwI0uUvMxySTLctFaKCh-rEOSyQxTZpKaTKD9977DrR9XFCSLQPKcQ96Tg9BzSs4oId2bQggTHBPKcMspx-oB2tGWM0wkbR-iHaGdwJ3Q6gQ9KeWaAKikfIxOGFOiVbrdoY8Xc_Wp2GWKobGl8Ta7FJuSavahGVJutqvUWD_1-Canvvopjs0-5bsYnPVryFNdmnGuK4C-Lk_Ro8HOJTy730_R13dvv-zf46sPF5f78yvspehWLB2T2jrOGReCOqElkZoI3XNJhHc9UdRapZzrBq6sE0IponnbBa9YZz3hp-jVwRce9a2GspplKj7Ms40h1WIo0xQ8Iab_QFW70S0D9OUf6DUkEWGQjeKCQbr6FzXaOZgpDmnN1m-m5pzzTlJFuQLq7C8UrD5AUimGYYLzI8HrIwEwa7hdR1tLMZefPx2z9MD6nErJYTA3eVpsvjOUmK0c5lAOA39utnKYTfPifrjqltD_VPxoAwDsABS4imPIv03_T9fvSNW_3Q</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Uhde, Andreas</creator><creator>Youn, Jung-Won</creator><creator>Maeda, Tomoya</creator><creator>Clermont, Lina</creator><creator>Matano, Christian</creator><creator>Krämer, Reinhard</creator><creator>Wendisch, Volker F.</creator><creator>Seibold, Gerd M.</creator><creator>Marin, Kay</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130201</creationdate><title>Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum</title><author>Uhde, Andreas ; Youn, Jung-Won ; Maeda, Tomoya ; Clermont, Lina ; Matano, Christian ; Krämer, Reinhard ; Wendisch, Volker F. ; Seibold, Gerd M. ; Marin, Kay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-6b269ab3323551b596069059d3605cbd081aa88bb7f38ab558809347ec827ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Aldose-Ketose Isomerases - metabolism</topic><topic>Amino acids</topic><topic>Amino Acids - biosynthesis</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon sources</topic><topic>Cloning</topic><topic>Corynebacteria</topic><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - enzymology</topic><topic>Corynebacterium glutamicum - genetics</topic><topic>Corynebacterium glutamicum - growth &amp; development</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>E coli</topic><topic>Genes</topic><topic>Glucosamine</topic><topic>Glucosamine - metabolism</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nitrogen</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Point Mutation</topic><topic>Prokaryotes</topic><topic>Promoter Regions, Genetic</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhde, Andreas</creatorcontrib><creatorcontrib>Youn, Jung-Won</creatorcontrib><creatorcontrib>Maeda, Tomoya</creatorcontrib><creatorcontrib>Clermont, Lina</creatorcontrib><creatorcontrib>Matano, Christian</creatorcontrib><creatorcontrib>Krämer, Reinhard</creatorcontrib><creatorcontrib>Wendisch, Volker F.</creatorcontrib><creatorcontrib>Seibold, Gerd M.</creatorcontrib><creatorcontrib>Marin, Kay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhde, Andreas</au><au>Youn, Jung-Won</au><au>Maeda, Tomoya</au><au>Clermont, Lina</au><au>Matano, Christian</au><au>Krämer, Reinhard</au><au>Wendisch, Volker F.</au><au>Seibold, Gerd M.</au><au>Marin, Kay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>97</volume><issue>4</issue><spage>1679</spage><epage>1687</epage><pages>1679-1687</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS Glc transport system to be responsible for glucosamine uptake in C. glutamicum . The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid l -lysine and the diamine putrescine from glucosamine was demonstrated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22854894</pmid><doi>10.1007/s00253-012-4313-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2013-02, Vol.97 (4), p.1679-1687
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1291606007
source MEDLINE; SpringerLink Journals
subjects Aldose-Ketose Isomerases - genetics
Aldose-Ketose Isomerases - metabolism
Amino acids
Amino Acids - biosynthesis
Applied Microbial and Cell Physiology
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomedical and Life Sciences
Biotechnology
Carbohydrates
Carbon
Carbon - metabolism
Carbon sources
Cloning
Corynebacteria
Corynebacterium glutamicum
Corynebacterium glutamicum - enzymology
Corynebacterium glutamicum - genetics
Corynebacterium glutamicum - growth & development
Corynebacterium glutamicum - metabolism
E coli
Genes
Glucosamine
Glucosamine - metabolism
Glucose
Glucose metabolism
Life Sciences
Metabolism
Microbial Genetics and Genomics
Microbiological research
Microbiology
Mutants
Mutation
Nitrogen
Physiological aspects
Plasmids
Point Mutation
Prokaryotes
Promoter Regions, Genetic
Studies
title Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucosamine%20as%20carbon%20source%20for%20amino%20acid-producing%20Corynebacterium%20glutamicum&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Uhde,%20Andreas&rft.date=2013-02-01&rft.volume=97&rft.issue=4&rft.spage=1679&rft.epage=1687&rft.pages=1679-1687&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-012-4313-8&rft_dat=%3Cgale_proqu%3EA337618138%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283524329&rft_id=info:pmid/22854894&rft_galeid=A337618138&rfr_iscdi=true