Evaluation of weather-based rice yield models in India
The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice c...
Gespeichert in:
Veröffentlicht in: | International journal of biometeorology 2013-01, Vol.57 (1), p.107-123 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | International journal of biometeorology |
container_volume | 57 |
creator | Sudharsan, D. Adinarayana, J. Reddy, D. Raji Sreenivas, G. Ninomiya, S. Hirafuji, M. Kiura, T. Tanaka, K. Desai, U. B. Merchant, S. N. |
description | The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994–1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making. |
doi_str_mv | 10.1007/s00484-012-0538-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291605759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1291605759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c4a2ce2030ea9674456117c8c3b0d3606ccd49ea1794d78916d169ef31c87f233</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouq7-AC9S8OKlOpOkSXoU8QsEL3oO2WSqlW6ryVbZf29kVxFB8JI55HnfYR7GDhBOEECfJgBpZAnIS6iEKdUGm6AUvEReyU02AeBQauRmh-2m9Aw5Y5TeZjucS85FLSZMXby5bnSLduiLoSneyS2eKJYzlygUsfVULFvqQjEfAnWpaPvipg-t22NbjesS7a_nlD1cXtyfX5e3d1c352e3pZcaF_l13BMHAeRqpaWsFKL2xosZBKFAeR9kTQ51LYM2NaqAqqZGoDe64UJM2fGq9yUOryOlhZ23yVPXuZ6GMVnkOQOVrup_oFpIaYzgGT36hT4PY-zzIZlSSnGBoDOFK8rHIaVIjX2J7dzFpUWwn_7tyr_N_u2nf6ty5nDdPM7mFL4TX8IzwFdAyl_9I8Ufq_9s_QAtVYxr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266623107</pqid></control><display><type>article</type><title>Evaluation of weather-based rice yield models in India</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Sudharsan, D. ; Adinarayana, J. ; Reddy, D. Raji ; Sreenivas, G. ; Ninomiya, S. ; Hirafuji, M. ; Kiura, T. ; Tanaka, K. ; Desai, U. B. ; Merchant, S. N.</creator><creatorcontrib>Sudharsan, D. ; Adinarayana, J. ; Reddy, D. Raji ; Sreenivas, G. ; Ninomiya, S. ; Hirafuji, M. ; Kiura, T. ; Tanaka, K. ; Desai, U. B. ; Merchant, S. N.</creatorcontrib><description>The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994–1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.</description><identifier>ISSN: 0020-7128</identifier><identifier>EISSN: 1432-1254</identifier><identifier>DOI: 10.1007/s00484-012-0538-6</identifier><identifier>PMID: 22422393</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animal Physiology ; Biological and Medical Physics ; Biophysics ; Cereal crops ; Correlation coefficient ; Crop production ; Crop yield ; Decision making ; Earth and Environmental Science ; Environment ; Environmental Health ; India ; Meteorology ; Models, Theoretical ; Monsoons ; Original Paper ; Oryza - growth & development ; Plant growth ; Plant Leaves - growth & development ; Plant Physiology ; Rice ; Tropical environments ; Weather</subject><ispartof>International journal of biometeorology, 2013-01, Vol.57 (1), p.107-123</ispartof><rights>ISB 2012</rights><rights>ISB 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c4a2ce2030ea9674456117c8c3b0d3606ccd49ea1794d78916d169ef31c87f233</citedby><cites>FETCH-LOGICAL-c471t-c4a2ce2030ea9674456117c8c3b0d3606ccd49ea1794d78916d169ef31c87f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00484-012-0538-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00484-012-0538-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22422393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sudharsan, D.</creatorcontrib><creatorcontrib>Adinarayana, J.</creatorcontrib><creatorcontrib>Reddy, D. Raji</creatorcontrib><creatorcontrib>Sreenivas, G.</creatorcontrib><creatorcontrib>Ninomiya, S.</creatorcontrib><creatorcontrib>Hirafuji, M.</creatorcontrib><creatorcontrib>Kiura, T.</creatorcontrib><creatorcontrib>Tanaka, K.</creatorcontrib><creatorcontrib>Desai, U. B.</creatorcontrib><creatorcontrib>Merchant, S. N.</creatorcontrib><title>Evaluation of weather-based rice yield models in India</title><title>International journal of biometeorology</title><addtitle>Int J Biometeorol</addtitle><addtitle>Int J Biometeorol</addtitle><description>The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994–1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.</description><subject>Animal Physiology</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cereal crops</subject><subject>Correlation coefficient</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Decision making</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>India</subject><subject>Meteorology</subject><subject>Models, Theoretical</subject><subject>Monsoons</subject><subject>Original Paper</subject><subject>Oryza - growth & development</subject><subject>Plant growth</subject><subject>Plant Leaves - growth & development</subject><subject>Plant Physiology</subject><subject>Rice</subject><subject>Tropical environments</subject><subject>Weather</subject><issn>0020-7128</issn><issn>1432-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1LxDAQhoMouq7-AC9S8OKlOpOkSXoU8QsEL3oO2WSqlW6ryVbZf29kVxFB8JI55HnfYR7GDhBOEECfJgBpZAnIS6iEKdUGm6AUvEReyU02AeBQauRmh-2m9Aw5Y5TeZjucS85FLSZMXby5bnSLduiLoSneyS2eKJYzlygUsfVULFvqQjEfAnWpaPvipg-t22NbjesS7a_nlD1cXtyfX5e3d1c352e3pZcaF_l13BMHAeRqpaWsFKL2xosZBKFAeR9kTQ51LYM2NaqAqqZGoDe64UJM2fGq9yUOryOlhZ23yVPXuZ6GMVnkOQOVrup_oFpIaYzgGT36hT4PY-zzIZlSSnGBoDOFK8rHIaVIjX2J7dzFpUWwn_7tyr_N_u2nf6ty5nDdPM7mFL4TX8IzwFdAyl_9I8Ufq_9s_QAtVYxr</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sudharsan, D.</creator><creator>Adinarayana, J.</creator><creator>Reddy, D. Raji</creator><creator>Sreenivas, G.</creator><creator>Ninomiya, S.</creator><creator>Hirafuji, M.</creator><creator>Kiura, T.</creator><creator>Tanaka, K.</creator><creator>Desai, U. B.</creator><creator>Merchant, S. N.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>Evaluation of weather-based rice yield models in India</title><author>Sudharsan, D. ; Adinarayana, J. ; Reddy, D. Raji ; Sreenivas, G. ; Ninomiya, S. ; Hirafuji, M. ; Kiura, T. ; Tanaka, K. ; Desai, U. B. ; Merchant, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c4a2ce2030ea9674456117c8c3b0d3606ccd49ea1794d78916d169ef31c87f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal Physiology</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cereal crops</topic><topic>Correlation coefficient</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Decision making</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>India</topic><topic>Meteorology</topic><topic>Models, Theoretical</topic><topic>Monsoons</topic><topic>Original Paper</topic><topic>Oryza - growth & development</topic><topic>Plant growth</topic><topic>Plant Leaves - growth & development</topic><topic>Plant Physiology</topic><topic>Rice</topic><topic>Tropical environments</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudharsan, D.</creatorcontrib><creatorcontrib>Adinarayana, J.</creatorcontrib><creatorcontrib>Reddy, D. Raji</creatorcontrib><creatorcontrib>Sreenivas, G.</creatorcontrib><creatorcontrib>Ninomiya, S.</creatorcontrib><creatorcontrib>Hirafuji, M.</creatorcontrib><creatorcontrib>Kiura, T.</creatorcontrib><creatorcontrib>Tanaka, K.</creatorcontrib><creatorcontrib>Desai, U. B.</creatorcontrib><creatorcontrib>Merchant, S. N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudharsan, D.</au><au>Adinarayana, J.</au><au>Reddy, D. Raji</au><au>Sreenivas, G.</au><au>Ninomiya, S.</au><au>Hirafuji, M.</au><au>Kiura, T.</au><au>Tanaka, K.</au><au>Desai, U. B.</au><au>Merchant, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of weather-based rice yield models in India</atitle><jtitle>International journal of biometeorology</jtitle><stitle>Int J Biometeorol</stitle><addtitle>Int J Biometeorol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>57</volume><issue>1</issue><spage>107</spage><epage>123</epage><pages>107-123</pages><issn>0020-7128</issn><eissn>1432-1254</eissn><abstract>The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994–1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22422393</pmid><doi>10.1007/s00484-012-0538-6</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7128 |
ispartof | International journal of biometeorology, 2013-01, Vol.57 (1), p.107-123 |
issn | 0020-7128 1432-1254 |
language | eng |
recordid | cdi_proquest_miscellaneous_1291605759 |
source | MEDLINE; SpringerLink Journals |
subjects | Animal Physiology Biological and Medical Physics Biophysics Cereal crops Correlation coefficient Crop production Crop yield Decision making Earth and Environmental Science Environment Environmental Health India Meteorology Models, Theoretical Monsoons Original Paper Oryza - growth & development Plant growth Plant Leaves - growth & development Plant Physiology Rice Tropical environments Weather |
title | Evaluation of weather-based rice yield models in India |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20weather-based%20rice%20yield%20models%20in%20India&rft.jtitle=International%20journal%20of%20biometeorology&rft.au=Sudharsan,%20D.&rft.date=2013-01-01&rft.volume=57&rft.issue=1&rft.spage=107&rft.epage=123&rft.pages=107-123&rft.issn=0020-7128&rft.eissn=1432-1254&rft_id=info:doi/10.1007/s00484-012-0538-6&rft_dat=%3Cproquest_cross%3E1291605759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266623107&rft_id=info:pmid/22422393&rfr_iscdi=true |