Tightly bound trions in monolayer MoS2

The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Materials 2013-03, Vol.12 (3), p.207-211
Hauptverfasser: Mak, Kin Fai, He, Keliang, Lee, Changgu, Lee, Gwan Hyoung, Hone, James, Heinz, Tony F., Shan, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 3
container_start_page 207
container_title Nature Materials
container_volume 12
creator Mak, Kin Fai
He, Keliang
Lee, Changgu
Lee, Gwan Hyoung
Hone, James
Heinz, Tony F.
Shan, Jie
description The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications. Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties 1 . In contrast to graphene, monolayer MoS 2 is a non-centrosymmetric material with a direct energy gap 2 , 3 , 4 , 5 . Strong photoluminescence 2 , 3 , a current on/off ratio exceeding 10 8 in field-effect transistors 6 , and efficient valley and spin control by optical helicity 7 , 8 , 9 have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS 2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.
doi_str_mv 10.1038/nmat3505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291601281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897401551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgiptT8BdIURC9qOYkbdJejuEXTLxwXpc0TbaONplJerF_b8c2lV3lQB7ew3kRugT8AJhmj6YVgaY4PUJDSDiLE8bw8W4GIGSAzrxfYkwgTdkpGhBKMKEchuh2Vs8XoVlHpe1MFQVXW-Oj2kStNbYRa-Wid_tJztGJFo1XF7t3hL6en2aT13j68fI2GU9jSTEJcaVlmmZaQw7AS8HLklY8rUhFMkkZoVIlSlSC57pUKiNaJVhDKamgjEoKOR2h622u9aEuvKyDkgtpjVEyFIAznGPWo7stWjn73Skfirb2UjWNMMp2vgCSA8NAMujpzQFd2s6Z_oSNwgnnOU_-AqWz3juli5WrW-HW_cpiU3CxL7inV7vArmxV9Qv3jfbgfgt8_2Xmyv3beBj2A3elga4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290477974</pqid></control><display><type>article</type><title>Tightly bound trions in monolayer MoS2</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie</creator><creatorcontrib>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie ; Energy Frontier Research Centers (EFRC) ; Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><description>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications. Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties 1 . In contrast to graphene, monolayer MoS 2 is a non-centrosymmetric material with a direct energy gap 2 , 3 , 4 , 5 . Strong photoluminescence 2 , 3 , a current on/off ratio exceeding 10 8 in field-effect transistors 6 , and efficient valley and spin control by optical helicity 7 , 8 , 9 have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS 2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3505</identifier><identifier>PMID: 23202371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/624/1075/401 ; Biomaterials ; Condensed Matter Physics ; Crystals ; Electronics ; letter ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optics ; Physical properties ; solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials) ; Spectrum analysis</subject><ispartof>Nature Materials, 2013-03, Vol.12 (3), p.207-211</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</citedby><cites>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3505$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3505$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23202371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1080906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>He, Keliang</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Lee, Gwan Hyoung</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><title>Tightly bound trions in monolayer MoS2</title><title>Nature Materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications. Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties 1 . In contrast to graphene, monolayer MoS 2 is a non-centrosymmetric material with a direct energy gap 2 , 3 , 4 , 5 . Strong photoluminescence 2 , 3 , a current on/off ratio exceeding 10 8 in field-effect transistors 6 , and efficient valley and spin control by optical helicity 7 , 8 , 9 have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS 2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</description><subject>639/301/119</subject><subject>639/624/1075/401</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Electronics</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optics</subject><subject>Physical properties</subject><subject>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</subject><subject>Spectrum analysis</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0F1LwzAUBuAgiptT8BdIURC9qOYkbdJejuEXTLxwXpc0TbaONplJerF_b8c2lV3lQB7ew3kRugT8AJhmj6YVgaY4PUJDSDiLE8bw8W4GIGSAzrxfYkwgTdkpGhBKMKEchuh2Vs8XoVlHpe1MFQVXW-Oj2kStNbYRa-Wid_tJztGJFo1XF7t3hL6en2aT13j68fI2GU9jSTEJcaVlmmZaQw7AS8HLklY8rUhFMkkZoVIlSlSC57pUKiNaJVhDKamgjEoKOR2h622u9aEuvKyDkgtpjVEyFIAznGPWo7stWjn73Skfirb2UjWNMMp2vgCSA8NAMujpzQFd2s6Z_oSNwgnnOU_-AqWz3juli5WrW-HW_cpiU3CxL7inV7vArmxV9Qv3jfbgfgt8_2Xmyv3beBj2A3elga4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mak, Kin Fai</creator><creator>He, Keliang</creator><creator>Lee, Changgu</creator><creator>Lee, Gwan Hyoung</creator><creator>Hone, James</creator><creator>Heinz, Tony F.</creator><creator>Shan, Jie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130301</creationdate><title>Tightly bound trions in monolayer MoS2</title><author>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119</topic><topic>639/624/1075/401</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Electronics</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optics</topic><topic>Physical properties</topic><topic>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>He, Keliang</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Lee, Gwan Hyoung</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mak, Kin Fai</au><au>He, Keliang</au><au>Lee, Changgu</au><au>Lee, Gwan Hyoung</au><au>Hone, James</au><au>Heinz, Tony F.</au><au>Shan, Jie</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightly bound trions in monolayer MoS2</atitle><jtitle>Nature Materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>207</spage><epage>211</epage><pages>207-211</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications. Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties 1 . In contrast to graphene, monolayer MoS 2 is a non-centrosymmetric material with a direct energy gap 2 , 3 , 4 , 5 . Strong photoluminescence 2 , 3 , a current on/off ratio exceeding 10 8 in field-effect transistors 6 , and efficient valley and spin control by optical helicity 7 , 8 , 9 have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS 2 field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23202371</pmid><doi>10.1038/nmat3505</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature Materials, 2013-03, Vol.12 (3), p.207-211
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1291601281
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/119
639/624/1075/401
Biomaterials
Condensed Matter Physics
Crystals
Electronics
letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Optics
Physical properties
solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)
Spectrum analysis
title Tightly bound trions in monolayer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightly%20bound%20trions%20in%20monolayer%20MoS2&rft.jtitle=Nature%20Materials&rft.au=Mak,%20Kin%20Fai&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2013-03-01&rft.volume=12&rft.issue=3&rft.spage=207&rft.epage=211&rft.pages=207-211&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3505&rft_dat=%3Cproquest_osti_%3E2897401551%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290477974&rft_id=info:pmid/23202371&rfr_iscdi=true