Tightly bound trions in monolayer MoS2
The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quas...
Gespeichert in:
Veröffentlicht in: | Nature Materials 2013-03, Vol.12 (3), p.207-211 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 3 |
container_start_page | 207 |
container_title | Nature Materials |
container_volume | 12 |
creator | Mak, Kin Fai He, Keliang Lee, Changgu Lee, Gwan Hyoung Hone, James Heinz, Tony F. Shan, Jie |
description | The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications.
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties
1
. In contrast to graphene, monolayer MoS
2
is a non-centrosymmetric material with a direct energy gap
2
,
3
,
4
,
5
. Strong photoluminescence
2
,
3
, a current on/off ratio exceeding 10
8
in field-effect transistors
6
, and efficient valley and spin control by optical helicity
7
,
8
,
9
have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS
2
field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals. |
doi_str_mv | 10.1038/nmat3505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1291601281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897401551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgiptT8BdIURC9qOYkbdJejuEXTLxwXpc0TbaONplJerF_b8c2lV3lQB7ew3kRugT8AJhmj6YVgaY4PUJDSDiLE8bw8W4GIGSAzrxfYkwgTdkpGhBKMKEchuh2Vs8XoVlHpe1MFQVXW-Oj2kStNbYRa-Wid_tJztGJFo1XF7t3hL6en2aT13j68fI2GU9jSTEJcaVlmmZaQw7AS8HLklY8rUhFMkkZoVIlSlSC57pUKiNaJVhDKamgjEoKOR2h622u9aEuvKyDkgtpjVEyFIAznGPWo7stWjn73Skfirb2UjWNMMp2vgCSA8NAMujpzQFd2s6Z_oSNwgnnOU_-AqWz3juli5WrW-HW_cpiU3CxL7inV7vArmxV9Qv3jfbgfgt8_2Xmyv3beBj2A3elga4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290477974</pqid></control><display><type>article</type><title>Tightly bound trions in monolayer MoS2</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie</creator><creatorcontrib>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie ; Energy Frontier Research Centers (EFRC) ; Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><description>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications.
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties
1
. In contrast to graphene, monolayer MoS
2
is a non-centrosymmetric material with a direct energy gap
2
,
3
,
4
,
5
. Strong photoluminescence
2
,
3
, a current on/off ratio exceeding 10
8
in field-effect transistors
6
, and efficient valley and spin control by optical helicity
7
,
8
,
9
have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS
2
field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3505</identifier><identifier>PMID: 23202371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/624/1075/401 ; Biomaterials ; Condensed Matter Physics ; Crystals ; Electronics ; letter ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optics ; Physical properties ; solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials) ; Spectrum analysis</subject><ispartof>Nature Materials, 2013-03, Vol.12 (3), p.207-211</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</citedby><cites>FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3505$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3505$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23202371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1080906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>He, Keliang</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Lee, Gwan Hyoung</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><title>Tightly bound trions in monolayer MoS2</title><title>Nature Materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications.
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties
1
. In contrast to graphene, monolayer MoS
2
is a non-centrosymmetric material with a direct energy gap
2
,
3
,
4
,
5
. Strong photoluminescence
2
,
3
, a current on/off ratio exceeding 10
8
in field-effect transistors
6
, and efficient valley and spin control by optical helicity
7
,
8
,
9
have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS
2
field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</description><subject>639/301/119</subject><subject>639/624/1075/401</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Electronics</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optics</subject><subject>Physical properties</subject><subject>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</subject><subject>Spectrum analysis</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0F1LwzAUBuAgiptT8BdIURC9qOYkbdJejuEXTLxwXpc0TbaONplJerF_b8c2lV3lQB7ew3kRugT8AJhmj6YVgaY4PUJDSDiLE8bw8W4GIGSAzrxfYkwgTdkpGhBKMKEchuh2Vs8XoVlHpe1MFQVXW-Oj2kStNbYRa-Wid_tJztGJFo1XF7t3hL6en2aT13j68fI2GU9jSTEJcaVlmmZaQw7AS8HLklY8rUhFMkkZoVIlSlSC57pUKiNaJVhDKamgjEoKOR2h622u9aEuvKyDkgtpjVEyFIAznGPWo7stWjn73Skfirb2UjWNMMp2vgCSA8NAMujpzQFd2s6Z_oSNwgnnOU_-AqWz3juli5WrW-HW_cpiU3CxL7inV7vArmxV9Qv3jfbgfgt8_2Xmyv3beBj2A3elga4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mak, Kin Fai</creator><creator>He, Keliang</creator><creator>Lee, Changgu</creator><creator>Lee, Gwan Hyoung</creator><creator>Hone, James</creator><creator>Heinz, Tony F.</creator><creator>Shan, Jie</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130301</creationdate><title>Tightly bound trions in monolayer MoS2</title><author>Mak, Kin Fai ; He, Keliang ; Lee, Changgu ; Lee, Gwan Hyoung ; Hone, James ; Heinz, Tony F. ; Shan, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-dfc558ff19117ba7bb3d75d2d28c3623ce4eada79fbee82fe40f1bc3a363c3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119</topic><topic>639/624/1075/401</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Electronics</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optics</topic><topic>Physical properties</topic><topic>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>He, Keliang</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><creatorcontrib>Lee, Gwan Hyoung</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mak, Kin Fai</au><au>He, Keliang</au><au>Lee, Changgu</au><au>Lee, Gwan Hyoung</au><au>Hone, James</au><au>Heinz, Tony F.</au><au>Shan, Jie</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightly bound trions in monolayer MoS2</atitle><jtitle>Nature Materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>207</spage><epage>211</epage><pages>207-211</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The appealing electronic properties of the monolayer semiconductor molybdenum disulphide make it a candidate material for electronic devices. The observation of tightly bound trions in this system—which have no analogue in conventional semiconductors—opens up possibilities for controlling these quasiparticles in future optoelectronic applications.
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties
1
. In contrast to graphene, monolayer MoS
2
is a non-centrosymmetric material with a direct energy gap
2
,
3
,
4
,
5
. Strong photoluminescence
2
,
3
, a current on/off ratio exceeding 10
8
in field-effect transistors
6
, and efficient valley and spin control by optical helicity
7
,
8
,
9
have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS
2
field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23202371</pmid><doi>10.1038/nmat3505</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature Materials, 2013-03, Vol.12 (3), p.207-211 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1291601281 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/119 639/624/1075/401 Biomaterials Condensed Matter Physics Crystals Electronics letter Materials Science Nanotechnology Optical and Electronic Materials Optics Physical properties solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials) Spectrum analysis |
title | Tightly bound trions in monolayer MoS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightly%20bound%20trions%20in%20monolayer%20MoS2&rft.jtitle=Nature%20Materials&rft.au=Mak,%20Kin%20Fai&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2013-03-01&rft.volume=12&rft.issue=3&rft.spage=207&rft.epage=211&rft.pages=207-211&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3505&rft_dat=%3Cproquest_osti_%3E2897401551%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290477974&rft_id=info:pmid/23202371&rfr_iscdi=true |