Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose

In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of d-glucose and d-xylose. The optimal conditions for the immobil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2013-04, Vol.42, p.156-162
Hauptverfasser: Li, Liang, Liang, Bo, Li, Feng, Shi, Jianguo, Mascini, Marco, Lang, Qiaolin, Liu, Aihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 156
container_title Biosensors & bioelectronics
container_volume 42
creator Li, Liang
Liang, Bo
Li, Feng
Shi, Jianguo
Mascini, Marco
Lang, Qiaolin
Liu, Aihua
description In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of d-glucose and d-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of d-glucose and d-xylose containing coenzyme NAD+ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at −0.5V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of d-glucose, and oxidation peak at +0.55V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD+ involved in the catalysis of d-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at −0.5V was linear with the concentration of d-glucose within the range of 0.25–6mM with a low detection limit of 0.1mM d-glucose (S/N=3), and the anodic peak current at +0.55V was linear with the concentration of d-xylose in the range of 0.25∼4mM with a low detection limit of 0.1mM d-xylose (S/N=3). Further, d-xylose and d-glucose did not interfere with each other. 300-fold excess saccharides including d-maltose, d-galactose, d-mannose, d-sucrose, d-fructose, d-cellobiose, and 60-fold excess l-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess d-xylitol did not affect the detection of d-glucose and d-xylose (both 1mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. ► Voltammetric simultaneous detection of glucose and xylose based on bienzyme-modified electrochemical biosensor. ► Non-interference from other saccharides and common interfering species. ► Enzyme-surface-displaying bacteria. ► Capable of real sample measurement.
doi_str_mv 10.1016/j.bios.2012.10.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1288313573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566312007567</els_id><sourcerecordid>1288313573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-22430f805f862ddb36b126e8455e1ebfdb506b072975d5c776995fbdf3bc4ccd3</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRSMEYpqBH2CBvEFik8aP2EkkNqjFSxqJDawjP8ozbtlxYycz03wqX4NN98COVZVuHZev6jbNS4K3BBPxdr9VLuYtxYQWYYsFfdRsyNCztqOMP242eOSi5UKwi-ZZznuMcU9G_LS5oIxiyjqxaX7tYutCiMp591MuLs4oWnTtVx0zoHjvjCxVzgbdH32VDNwcTYrXMNeBcfng5REMuruJHpAG71HZEVa_uDvpfZlomVSRZjnHZVXwp9ExHGJ2CyDrfMgoROOsKzB40EuKpgxiQtnVRXKGuGZ0G0sbAizJ6WJjKeDZrmkfDFejpj1Zfd48sdJneHGul833jx--7T63V18_fdm9v2o1G8TSUtoxbAfM7SCoMYoJRaiAoeMcCChrFMdC4Z6OPTdc970YR26VsUzpTmvDLps3p72HFH-skJcpuFwPcfI9EToMjDDes4LSE6pTzDmBnQ7JBZmOE8FTzXTaTzXTqWZatZJpefTqvH9VAczfJw8hFuD1GZBZS2-TnLXL_7ge07Eb6-_vThyUa9w6SFPWDmYNxqVyzMlE9z8fvwEywcda</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288313573</pqid></control><display><type>article</type><title>Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Liang ; Liang, Bo ; Li, Feng ; Shi, Jianguo ; Mascini, Marco ; Lang, Qiaolin ; Liu, Aihua</creator><creatorcontrib>Li, Liang ; Liang, Bo ; Li, Feng ; Shi, Jianguo ; Mascini, Marco ; Lang, Qiaolin ; Liu, Aihua</creatorcontrib><description>In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of d-glucose and d-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of d-glucose and d-xylose containing coenzyme NAD+ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at −0.5V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of d-glucose, and oxidation peak at +0.55V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD+ involved in the catalysis of d-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at −0.5V was linear with the concentration of d-glucose within the range of 0.25–6mM with a low detection limit of 0.1mM d-glucose (S/N=3), and the anodic peak current at +0.55V was linear with the concentration of d-xylose in the range of 0.25∼4mM with a low detection limit of 0.1mM d-xylose (S/N=3). Further, d-xylose and d-glucose did not interfere with each other. 300-fold excess saccharides including d-maltose, d-galactose, d-mannose, d-sucrose, d-fructose, d-cellobiose, and 60-fold excess l-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess d-xylitol did not affect the detection of d-glucose and d-xylose (both 1mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. ► Voltammetric simultaneous detection of glucose and xylose based on bienzyme-modified electrochemical biosensor. ► Non-interference from other saccharides and common interfering species. ► Enzyme-surface-displaying bacteria. ► Capable of real sample measurement.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2012.10.062</identifier><identifier>PMID: 23202346</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Catalysis ; D-glucose ; D-xylose ; D-Xylulose Reductase - chemistry ; Electrochemistry ; Enzymes, Immobilized - chemistry ; Fundamental and applied biological sciences. Psychology ; Glucose - isolation &amp; purification ; Glucose oxidase ; Glucose Oxidase - chemistry ; Methods. Procedures. Technologies ; Nanocomposites - chemistry ; Nanotubes, Carbon - chemistry ; Oxidation-Reduction ; Simultaneous determination ; Various methods and equipments ; Voltammetric biosensor ; Xylose - isolation &amp; purification ; Xylose dehydrogenase-displayed bacteria</subject><ispartof>Biosensors &amp; bioelectronics, 2013-04, Vol.42, p.156-162</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-22430f805f862ddb36b126e8455e1ebfdb506b072975d5c776995fbdf3bc4ccd3</citedby><cites>FETCH-LOGICAL-c386t-22430f805f862ddb36b126e8455e1ebfdb506b072975d5c776995fbdf3bc4ccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2012.10.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27029493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23202346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Shi, Jianguo</creatorcontrib><creatorcontrib>Mascini, Marco</creatorcontrib><creatorcontrib>Lang, Qiaolin</creatorcontrib><creatorcontrib>Liu, Aihua</creatorcontrib><title>Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of d-glucose and d-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of d-glucose and d-xylose containing coenzyme NAD+ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at −0.5V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of d-glucose, and oxidation peak at +0.55V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD+ involved in the catalysis of d-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at −0.5V was linear with the concentration of d-glucose within the range of 0.25–6mM with a low detection limit of 0.1mM d-glucose (S/N=3), and the anodic peak current at +0.55V was linear with the concentration of d-xylose in the range of 0.25∼4mM with a low detection limit of 0.1mM d-xylose (S/N=3). Further, d-xylose and d-glucose did not interfere with each other. 300-fold excess saccharides including d-maltose, d-galactose, d-mannose, d-sucrose, d-fructose, d-cellobiose, and 60-fold excess l-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess d-xylitol did not affect the detection of d-glucose and d-xylose (both 1mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. ► Voltammetric simultaneous detection of glucose and xylose based on bienzyme-modified electrochemical biosensor. ► Non-interference from other saccharides and common interfering species. ► Enzyme-surface-displaying bacteria. ► Capable of real sample measurement.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>D-glucose</subject><subject>D-xylose</subject><subject>D-Xylulose Reductase - chemistry</subject><subject>Electrochemistry</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - isolation &amp; purification</subject><subject>Glucose oxidase</subject><subject>Glucose Oxidase - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Nanocomposites - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Simultaneous determination</subject><subject>Various methods and equipments</subject><subject>Voltammetric biosensor</subject><subject>Xylose - isolation &amp; purification</subject><subject>Xylose dehydrogenase-displayed bacteria</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcuO1DAQRSMEYpqBH2CBvEFik8aP2EkkNqjFSxqJDawjP8ozbtlxYycz03wqX4NN98COVZVuHZev6jbNS4K3BBPxdr9VLuYtxYQWYYsFfdRsyNCztqOMP242eOSi5UKwi-ZZznuMcU9G_LS5oIxiyjqxaX7tYutCiMp591MuLs4oWnTtVx0zoHjvjCxVzgbdH32VDNwcTYrXMNeBcfng5REMuruJHpAG71HZEVa_uDvpfZlomVSRZjnHZVXwp9ExHGJ2CyDrfMgoROOsKzB40EuKpgxiQtnVRXKGuGZ0G0sbAizJ6WJjKeDZrmkfDFejpj1Zfd48sdJneHGul833jx--7T63V18_fdm9v2o1G8TSUtoxbAfM7SCoMYoJRaiAoeMcCChrFMdC4Z6OPTdc970YR26VsUzpTmvDLps3p72HFH-skJcpuFwPcfI9EToMjDDes4LSE6pTzDmBnQ7JBZmOE8FTzXTaTzXTqWZatZJpefTqvH9VAczfJw8hFuD1GZBZS2-TnLXL_7ge07Eb6-_vThyUa9w6SFPWDmYNxqVyzMlE9z8fvwEywcda</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Li, Liang</creator><creator>Liang, Bo</creator><creator>Li, Feng</creator><creator>Shi, Jianguo</creator><creator>Mascini, Marco</creator><creator>Lang, Qiaolin</creator><creator>Liu, Aihua</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130415</creationdate><title>Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose</title><author>Li, Liang ; Liang, Bo ; Li, Feng ; Shi, Jianguo ; Mascini, Marco ; Lang, Qiaolin ; Liu, Aihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-22430f805f862ddb36b126e8455e1ebfdb506b072975d5c776995fbdf3bc4ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>D-glucose</topic><topic>D-xylose</topic><topic>D-Xylulose Reductase - chemistry</topic><topic>Electrochemistry</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - isolation &amp; purification</topic><topic>Glucose oxidase</topic><topic>Glucose Oxidase - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Nanocomposites - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Simultaneous determination</topic><topic>Various methods and equipments</topic><topic>Voltammetric biosensor</topic><topic>Xylose - isolation &amp; purification</topic><topic>Xylose dehydrogenase-displayed bacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Shi, Jianguo</creatorcontrib><creatorcontrib>Mascini, Marco</creatorcontrib><creatorcontrib>Lang, Qiaolin</creatorcontrib><creatorcontrib>Liu, Aihua</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liang</au><au>Liang, Bo</au><au>Li, Feng</au><au>Shi, Jianguo</au><au>Mascini, Marco</au><au>Lang, Qiaolin</au><au>Liu, Aihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2013-04-15</date><risdate>2013</risdate><volume>42</volume><spage>156</spage><epage>162</epage><pages>156-162</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of d-glucose and d-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of d-glucose and d-xylose containing coenzyme NAD+ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at −0.5V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of d-glucose, and oxidation peak at +0.55V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD+ involved in the catalysis of d-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at −0.5V was linear with the concentration of d-glucose within the range of 0.25–6mM with a low detection limit of 0.1mM d-glucose (S/N=3), and the anodic peak current at +0.55V was linear with the concentration of d-xylose in the range of 0.25∼4mM with a low detection limit of 0.1mM d-xylose (S/N=3). Further, d-xylose and d-glucose did not interfere with each other. 300-fold excess saccharides including d-maltose, d-galactose, d-mannose, d-sucrose, d-fructose, d-cellobiose, and 60-fold excess l-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess d-xylitol did not affect the detection of d-glucose and d-xylose (both 1mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. ► Voltammetric simultaneous detection of glucose and xylose based on bienzyme-modified electrochemical biosensor. ► Non-interference from other saccharides and common interfering species. ► Enzyme-surface-displaying bacteria. ► Capable of real sample measurement.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23202346</pmid><doi>10.1016/j.bios.2012.10.062</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2013-04, Vol.42, p.156-162
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1288313573
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biological and medical sciences
Biosensing Techniques - methods
Biosensors
Biotechnology
Catalysis
D-glucose
D-xylose
D-Xylulose Reductase - chemistry
Electrochemistry
Enzymes, Immobilized - chemistry
Fundamental and applied biological sciences. Psychology
Glucose - isolation & purification
Glucose oxidase
Glucose Oxidase - chemistry
Methods. Procedures. Technologies
Nanocomposites - chemistry
Nanotubes, Carbon - chemistry
Oxidation-Reduction
Simultaneous determination
Various methods and equipments
Voltammetric biosensor
Xylose - isolation & purification
Xylose dehydrogenase-displayed bacteria
title Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of d-glucose and d-xylose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-immobilization%20of%20glucose%20oxidase%20and%20xylose%20dehydrogenase%20displayed%20whole%20cell%20on%20multiwalled%20carbon%20nanotube%20nanocomposite%20films%20modified%20electrode%20for%20simultaneous%20voltammetric%20detection%20of%20d-glucose%20and%20d-xylose&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Li,%20Liang&rft.date=2013-04-15&rft.volume=42&rft.spage=156&rft.epage=162&rft.pages=156-162&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2012.10.062&rft_dat=%3Cproquest_cross%3E1288313573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288313573&rft_id=info:pmid/23202346&rft_els_id=S0956566312007567&rfr_iscdi=true