Moisture diffusivity in food materials

► Self diffusivity of water in biopolymer matrices can be predicted using free volume theory. ► Self diffusivity of biopolymers in solution is predicted using generalised Stokes–Einstein relation. ► The Fickian mutual diffusivity can be linked to the self diffusivities via the Darken relation. ► Moi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2013-06, Vol.138 (2-3), p.1265-1274
Hauptverfasser: van der Sman, R.G.M., Meinders, M.B.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1274
container_issue 2-3
container_start_page 1265
container_title Food chemistry
container_volume 138
creator van der Sman, R.G.M.
Meinders, M.B.J.
description ► Self diffusivity of water in biopolymer matrices can be predicted using free volume theory. ► Self diffusivity of biopolymers in solution is predicted using generalised Stokes–Einstein relation. ► The Fickian mutual diffusivity can be linked to the self diffusivities via the Darken relation. ► Moisture diffusion in dense biopolymer and sugar matrices is showing universal behaviour. This paper investigates whether moisture diffusion can be predicted for food materials. We focus especially on mixtures of glucose homopolymers and water. The predictions are based on three theories: (1) the Darken relation, linking the mutual diffusivity to the self diffusivities, (2) the generalised Stokes–Einstein relation for the solute self diffusivity, and (3) the free volume theory for water self diffusivity. Using literature data obtained for the whole class of glucose homopolymer, we show that these theories predict the moisture diffusivity for the whole range of volume fractions, from zero to one, and a broad range of temperatures. Furthermore, we show that the theories equally holds for other hydrophilic biopolymers one finds in food. In the concentrated regime, all experimental data collapse to a single curve. This universal behaviour arises because these biopolymers form a hydrogen bonded network, where water molecules move via rearrangement of the free volume.
doi_str_mv 10.1016/j.foodchem.2012.10.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1288308738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814612016007</els_id><sourcerecordid>1288308738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-e90bdd14959a6328eb98ab4f4bae92cf190b999403466def62f4128203c2020c3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWqt_oexF8bJ18mg2uSniCype9Byy2QmmdLua7Ar-e7O06tHTwMw3r4-QGYU5BSovV3PfdY17w3bOgLKcnINke2RCVcXLCiq2TybAQZWKCnlEjlNaAUBm1SE5YlxQygSbkPOnLqR-iFg0wfshhc_QfxVhU4zji9b2GINdpxNy4HPA012ckte725ebh3L5fP94c70sHdeqL1FD3TRU6IW2kjOFtVa2Fl7UFjVznua61loAF1I26CXzgjLFgDuWb3N8Si62c99j9zFg6k0bksP12m6wG5LJsMpPVVxlVG5RF7uUInrzHkNr45ehYEZHZmV-HJnR0ZjPjnLjbLdjqFtsftt-pGTgbAfY5OzaR7txIf1xUsMCKsjc1ZbDbOQzYDTJBdw4bEJE15umC__d8g3dCIZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288308738</pqid></control><display><type>article</type><title>Moisture diffusivity in food materials</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>van der Sman, R.G.M. ; Meinders, M.B.J.</creator><creatorcontrib>van der Sman, R.G.M. ; Meinders, M.B.J.</creatorcontrib><description>► Self diffusivity of water in biopolymer matrices can be predicted using free volume theory. ► Self diffusivity of biopolymers in solution is predicted using generalised Stokes–Einstein relation. ► The Fickian mutual diffusivity can be linked to the self diffusivities via the Darken relation. ► Moisture diffusion in dense biopolymer and sugar matrices is showing universal behaviour. This paper investigates whether moisture diffusion can be predicted for food materials. We focus especially on mixtures of glucose homopolymers and water. The predictions are based on three theories: (1) the Darken relation, linking the mutual diffusivity to the self diffusivities, (2) the generalised Stokes–Einstein relation for the solute self diffusivity, and (3) the free volume theory for water self diffusivity. Using literature data obtained for the whole class of glucose homopolymer, we show that these theories predict the moisture diffusivity for the whole range of volume fractions, from zero to one, and a broad range of temperatures. Furthermore, we show that the theories equally holds for other hydrophilic biopolymers one finds in food. In the concentrated regime, all experimental data collapse to a single curve. This universal behaviour arises because these biopolymers form a hydrogen bonded network, where water molecules move via rearrangement of the free volume.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2012.10.062</identifier><identifier>PMID: 23411242</identifier><identifier>CODEN: FOCHDJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Biopolymers ; Diffusion ; Food Analysis ; Food industries ; Free volume ; Fundamental and applied biological sciences. Psychology ; Solutions - chemistry ; Temperature ; Water - chemistry</subject><ispartof>Food chemistry, 2013-06, Vol.138 (2-3), p.1265-1274</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-e90bdd14959a6328eb98ab4f4bae92cf190b999403466def62f4128203c2020c3</citedby><cites>FETCH-LOGICAL-c398t-e90bdd14959a6328eb98ab4f4bae92cf190b999403466def62f4128203c2020c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.foodchem.2012.10.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26905070$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23411242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Sman, R.G.M.</creatorcontrib><creatorcontrib>Meinders, M.B.J.</creatorcontrib><title>Moisture diffusivity in food materials</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>► Self diffusivity of water in biopolymer matrices can be predicted using free volume theory. ► Self diffusivity of biopolymers in solution is predicted using generalised Stokes–Einstein relation. ► The Fickian mutual diffusivity can be linked to the self diffusivities via the Darken relation. ► Moisture diffusion in dense biopolymer and sugar matrices is showing universal behaviour. This paper investigates whether moisture diffusion can be predicted for food materials. We focus especially on mixtures of glucose homopolymers and water. The predictions are based on three theories: (1) the Darken relation, linking the mutual diffusivity to the self diffusivities, (2) the generalised Stokes–Einstein relation for the solute self diffusivity, and (3) the free volume theory for water self diffusivity. Using literature data obtained for the whole class of glucose homopolymer, we show that these theories predict the moisture diffusivity for the whole range of volume fractions, from zero to one, and a broad range of temperatures. Furthermore, we show that the theories equally holds for other hydrophilic biopolymers one finds in food. In the concentrated regime, all experimental data collapse to a single curve. This universal behaviour arises because these biopolymers form a hydrogen bonded network, where water molecules move via rearrangement of the free volume.</description><subject>Biological and medical sciences</subject><subject>Biopolymers</subject><subject>Diffusion</subject><subject>Food Analysis</subject><subject>Food industries</subject><subject>Free volume</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Solutions - chemistry</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLAzEQgIMoWqt_oexF8bJ18mg2uSniCype9Byy2QmmdLua7Ar-e7O06tHTwMw3r4-QGYU5BSovV3PfdY17w3bOgLKcnINke2RCVcXLCiq2TybAQZWKCnlEjlNaAUBm1SE5YlxQygSbkPOnLqR-iFg0wfshhc_QfxVhU4zji9b2GINdpxNy4HPA012ckte725ebh3L5fP94c70sHdeqL1FD3TRU6IW2kjOFtVa2Fl7UFjVznua61loAF1I26CXzgjLFgDuWb3N8Si62c99j9zFg6k0bksP12m6wG5LJsMpPVVxlVG5RF7uUInrzHkNr45ehYEZHZmV-HJnR0ZjPjnLjbLdjqFtsftt-pGTgbAfY5OzaR7txIf1xUsMCKsjc1ZbDbOQzYDTJBdw4bEJE15umC__d8g3dCIZj</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>van der Sman, R.G.M.</creator><creator>Meinders, M.B.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130601</creationdate><title>Moisture diffusivity in food materials</title><author>van der Sman, R.G.M. ; Meinders, M.B.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-e90bdd14959a6328eb98ab4f4bae92cf190b999403466def62f4128203c2020c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and medical sciences</topic><topic>Biopolymers</topic><topic>Diffusion</topic><topic>Food Analysis</topic><topic>Food industries</topic><topic>Free volume</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Solutions - chemistry</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Sman, R.G.M.</creatorcontrib><creatorcontrib>Meinders, M.B.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Sman, R.G.M.</au><au>Meinders, M.B.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture diffusivity in food materials</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>138</volume><issue>2-3</issue><spage>1265</spage><epage>1274</epage><pages>1265-1274</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><coden>FOCHDJ</coden><abstract>► Self diffusivity of water in biopolymer matrices can be predicted using free volume theory. ► Self diffusivity of biopolymers in solution is predicted using generalised Stokes–Einstein relation. ► The Fickian mutual diffusivity can be linked to the self diffusivities via the Darken relation. ► Moisture diffusion in dense biopolymer and sugar matrices is showing universal behaviour. This paper investigates whether moisture diffusion can be predicted for food materials. We focus especially on mixtures of glucose homopolymers and water. The predictions are based on three theories: (1) the Darken relation, linking the mutual diffusivity to the self diffusivities, (2) the generalised Stokes–Einstein relation for the solute self diffusivity, and (3) the free volume theory for water self diffusivity. Using literature data obtained for the whole class of glucose homopolymer, we show that these theories predict the moisture diffusivity for the whole range of volume fractions, from zero to one, and a broad range of temperatures. Furthermore, we show that the theories equally holds for other hydrophilic biopolymers one finds in food. In the concentrated regime, all experimental data collapse to a single curve. This universal behaviour arises because these biopolymers form a hydrogen bonded network, where water molecules move via rearrangement of the free volume.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23411242</pmid><doi>10.1016/j.foodchem.2012.10.062</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2013-06, Vol.138 (2-3), p.1265-1274
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_1288308738
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Biological and medical sciences
Biopolymers
Diffusion
Food Analysis
Food industries
Free volume
Fundamental and applied biological sciences. Psychology
Solutions - chemistry
Temperature
Water - chemistry
title Moisture diffusivity in food materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20diffusivity%20in%20food%20materials&rft.jtitle=Food%20chemistry&rft.au=van%20der%20Sman,%20R.G.M.&rft.date=2013-06-01&rft.volume=138&rft.issue=2-3&rft.spage=1265&rft.epage=1274&rft.pages=1265-1274&rft.issn=0308-8146&rft.eissn=1873-7072&rft.coden=FOCHDJ&rft_id=info:doi/10.1016/j.foodchem.2012.10.062&rft_dat=%3Cproquest_cross%3E1288308738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288308738&rft_id=info:pmid/23411242&rft_els_id=S0308814612016007&rfr_iscdi=true