Molten globules, entropy-driven conformational change and protein folding

► Molten globules known to bind ligands include binding proteins and a designed enzyme. ► On ligand binding: binding proteins remain molten; designed enzyme folds. ► Conformational entropy of side chains found by NMR line broadening. ► Changes in entropy upon effector binding, though far from site,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2013-02, Vol.23 (1), p.4-10
Hauptverfasser: Baldwin, Robert L, Rose, George D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 4
container_title Current opinion in structural biology
container_volume 23
creator Baldwin, Robert L
Rose, George D
description ► Molten globules known to bind ligands include binding proteins and a designed enzyme. ► On ligand binding: binding proteins remain molten; designed enzyme folds. ► Conformational entropy of side chains found by NMR line broadening. ► Changes in entropy upon effector binding, though far from site, help to drive binding. The exquisite side chain close-packing in the protein core and at binding interfaces has prompted a conviction that packing selectivity is the primary mechanism for molecular recognition in folding and/or binding reactions. Contrary to this view, molten globule proteins can adopt native topology and bind targets tightly and specifically in the absence of side chain close-packing. The molten globule is a highly dynamic form with native-like secondary structure and a loose protein core that admits solvent. The related (but still controversial) dry molten globule is an expanded form of the native protein with largely intact topology but a tighter protein core that excludes solvent. Neither form retains side chain close-packing, and therefore both structure and function must result from other factors, assuming that the reality of the dry molten globule is accepted. This simplifying realization calls for a re-evaluation of established models.
doi_str_mv 10.1016/j.sbi.2012.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1287886123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X12001844</els_id><sourcerecordid>1287886123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5f2ebfc3ee7ed17d30109abf4c1de493079e3cb5577f0a1e7a186bb8ab4efc773</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiReO4_QFdAo0ZIvVOlEwJnQIjbQw46NIC2Qh-HF0aMumQsoH8-yqwmzHTDfe87-Eexr4iVAi4-LatsvZVDVhXiBVA84HNsBN9CZw_XbAZ9G1fNg08XbKrnLcAsMCm-8Qua15zIaCZsdVjHEYKxWaI-jBQvi0ojCnuX0qb_HFamBhcTDs1-hjUUJi_KmyoUMEW-xRH8qFwcbA-bD6zj04Nmb6c55z9-XH_e_lQrn_9XC3v1qXhLR_L1tWkneFEgiwKywGhV9o1Bi01PQfREze6bYVwoJCEwm6hdad0Q84Iwefs5tQ73X8-UB7lzmdDw6ACxUOWWHei6xZY8wnFE2pSzDmRk_vkdyq9SAT5alBu5WRQvhqUiHIyOGWuz_UHvSP7lvivbAK-nwCanjx6SjIbT8GQ9YnMKG3079T_A6LJgqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287886123</pqid></control><display><type>article</type><title>Molten globules, entropy-driven conformational change and protein folding</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Baldwin, Robert L ; Rose, George D</creator><creatorcontrib>Baldwin, Robert L ; Rose, George D</creatorcontrib><description>► Molten globules known to bind ligands include binding proteins and a designed enzyme. ► On ligand binding: binding proteins remain molten; designed enzyme folds. ► Conformational entropy of side chains found by NMR line broadening. ► Changes in entropy upon effector binding, though far from site, help to drive binding. The exquisite side chain close-packing in the protein core and at binding interfaces has prompted a conviction that packing selectivity is the primary mechanism for molecular recognition in folding and/or binding reactions. Contrary to this view, molten globule proteins can adopt native topology and bind targets tightly and specifically in the absence of side chain close-packing. The molten globule is a highly dynamic form with native-like secondary structure and a loose protein core that admits solvent. The related (but still controversial) dry molten globule is an expanded form of the native protein with largely intact topology but a tighter protein core that excludes solvent. Neither form retains side chain close-packing, and therefore both structure and function must result from other factors, assuming that the reality of the dry molten globule is accepted. This simplifying realization calls for a re-evaluation of established models.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2012.11.004</identifier><identifier>PMID: 23237704</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Ligands ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins - chemistry ; Thermodynamics</subject><ispartof>Current opinion in structural biology, 2013-02, Vol.23 (1), p.4-10</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5f2ebfc3ee7ed17d30109abf4c1de493079e3cb5577f0a1e7a186bb8ab4efc773</citedby><cites>FETCH-LOGICAL-c353t-5f2ebfc3ee7ed17d30109abf4c1de493079e3cb5577f0a1e7a186bb8ab4efc773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sbi.2012.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23237704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldwin, Robert L</creatorcontrib><creatorcontrib>Rose, George D</creatorcontrib><title>Molten globules, entropy-driven conformational change and protein folding</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>► Molten globules known to bind ligands include binding proteins and a designed enzyme. ► On ligand binding: binding proteins remain molten; designed enzyme folds. ► Conformational entropy of side chains found by NMR line broadening. ► Changes in entropy upon effector binding, though far from site, help to drive binding. The exquisite side chain close-packing in the protein core and at binding interfaces has prompted a conviction that packing selectivity is the primary mechanism for molecular recognition in folding and/or binding reactions. Contrary to this view, molten globule proteins can adopt native topology and bind targets tightly and specifically in the absence of side chain close-packing. The molten globule is a highly dynamic form with native-like secondary structure and a loose protein core that admits solvent. The related (but still controversial) dry molten globule is an expanded form of the native protein with largely intact topology but a tighter protein core that excludes solvent. Neither form retains side chain close-packing, and therefore both structure and function must result from other factors, assuming that the reality of the dry molten globule is accepted. This simplifying realization calls for a re-evaluation of established models.</description><subject>Ligands</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1v2zAQhokiReO4_QFdAo0ZIvVOlEwJnQIjbQw46NIC2Qh-HF0aMumQsoH8-yqwmzHTDfe87-Eexr4iVAi4-LatsvZVDVhXiBVA84HNsBN9CZw_XbAZ9G1fNg08XbKrnLcAsMCm-8Qua15zIaCZsdVjHEYKxWaI-jBQvi0ojCnuX0qb_HFamBhcTDs1-hjUUJi_KmyoUMEW-xRH8qFwcbA-bD6zj04Nmb6c55z9-XH_e_lQrn_9XC3v1qXhLR_L1tWkneFEgiwKywGhV9o1Bi01PQfREze6bYVwoJCEwm6hdad0Q84Iwefs5tQ73X8-UB7lzmdDw6ACxUOWWHei6xZY8wnFE2pSzDmRk_vkdyq9SAT5alBu5WRQvhqUiHIyOGWuz_UHvSP7lvivbAK-nwCanjx6SjIbT8GQ9YnMKG3079T_A6LJgqk</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Baldwin, Robert L</creator><creator>Rose, George D</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>Molten globules, entropy-driven conformational change and protein folding</title><author>Baldwin, Robert L ; Rose, George D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5f2ebfc3ee7ed17d30109abf4c1de493079e3cb5577f0a1e7a186bb8ab4efc773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ligands</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldwin, Robert L</creatorcontrib><creatorcontrib>Rose, George D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldwin, Robert L</au><au>Rose, George D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molten globules, entropy-driven conformational change and protein folding</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>23</volume><issue>1</issue><spage>4</spage><epage>10</epage><pages>4-10</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>► Molten globules known to bind ligands include binding proteins and a designed enzyme. ► On ligand binding: binding proteins remain molten; designed enzyme folds. ► Conformational entropy of side chains found by NMR line broadening. ► Changes in entropy upon effector binding, though far from site, help to drive binding. The exquisite side chain close-packing in the protein core and at binding interfaces has prompted a conviction that packing selectivity is the primary mechanism for molecular recognition in folding and/or binding reactions. Contrary to this view, molten globule proteins can adopt native topology and bind targets tightly and specifically in the absence of side chain close-packing. The molten globule is a highly dynamic form with native-like secondary structure and a loose protein core that admits solvent. The related (but still controversial) dry molten globule is an expanded form of the native protein with largely intact topology but a tighter protein core that excludes solvent. Neither form retains side chain close-packing, and therefore both structure and function must result from other factors, assuming that the reality of the dry molten globule is accepted. This simplifying realization calls for a re-evaluation of established models.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23237704</pmid><doi>10.1016/j.sbi.2012.11.004</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-440X
ispartof Current opinion in structural biology, 2013-02, Vol.23 (1), p.4-10
issn 0959-440X
1879-033X
language eng
recordid cdi_proquest_miscellaneous_1287886123
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Ligands
Protein Binding
Protein Conformation
Protein Folding
Protein Structure, Secondary
Proteins - chemistry
Thermodynamics
title Molten globules, entropy-driven conformational change and protein folding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molten%20globules,%20entropy-driven%20conformational%20change%20and%20protein%20folding&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Baldwin,%20Robert%20L&rft.date=2013-02&rft.volume=23&rft.issue=1&rft.spage=4&rft.epage=10&rft.pages=4-10&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2012.11.004&rft_dat=%3Cproquest_cross%3E1287886123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287886123&rft_id=info:pmid/23237704&rft_els_id=S0959440X12001844&rfr_iscdi=true