Probing Ligand Binding to Thromboxane Synthase

Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2013-02, Vol.52 (6), p.1113-1121
Hauptverfasser: Chao, Wei-Chih, Lu, Jyh-Feng, Wang, Jinn-Shyan, Yang, Hsiao-Ching, Pan, Tai-An, Chou, Steven Chun-Wei, Wang, Lee-Ho, Chou, Pi-Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1121
container_issue 6
container_start_page 1113
container_title Biochemistry (Easton)
container_volume 52
creator Chao, Wei-Chih
Lu, Jyh-Feng
Wang, Jinn-Shyan
Yang, Hsiao-Ching
Pan, Tai-An
Chou, Steven Chun-Wei
Wang, Lee-Ho
Chou, Pi-Tai
description Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.
doi_str_mv 10.1021/bi301400t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1287389311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1287389311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIXV2N7tJjrb4BQUF63nZr7QpTbbuJmD_vVtae_I0DDy8zLwIXWMYYyD4QdUUcAbQnaAhZgTSrCzZKRoCAE9JyWGALkJYxTWDPDtHA0IpySmlQzT-8E7V7SKZ1QvZmmRSt2a3di6ZL71rlPuRrU0-t223lMFeorNKroO9OswR-np-mk9f09n7y9v0cZZKilmXcqgwU8yanDDQhlAOFqtK5pIX1BjGjS6B47KSBdOS2koxWegyM1aaoqScjtDdPnfj3XdvQyeaOmi7XsdjXB8EJkVOo8Q40vs91d6F4G0lNr5upN8KDGJXjzjWE-3NIbZXjTVH-ddHBLd7IHUQK9f7Nn75T9Av7ilqjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287389311</pqid></control><display><type>article</type><title>Probing Ligand Binding to Thromboxane Synthase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</creator><creatorcontrib>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</creatorcontrib><description>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi301400t</identifier><identifier>PMID: 23327333</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; Computer Simulation ; Cytochrome P-450 CYP3A - genetics ; Cytochrome P-450 CYP3A - metabolism ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Heme - metabolism ; Humans ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Naphthalenesulfonates - metabolism ; Oxazines ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Spectrometry, Fluorescence ; Thromboxane-A Synthase - chemistry ; Thromboxane-A Synthase - genetics ; Thromboxane-A Synthase - metabolism ; Tryptophan - chemistry ; Tryptophan - metabolism</subject><ispartof>Biochemistry (Easton), 2013-02, Vol.52 (6), p.1113-1121</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</citedby><cites>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi301400t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi301400t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23327333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chao, Wei-Chih</creatorcontrib><creatorcontrib>Lu, Jyh-Feng</creatorcontrib><creatorcontrib>Wang, Jinn-Shyan</creatorcontrib><creatorcontrib>Yang, Hsiao-Ching</creatorcontrib><creatorcontrib>Pan, Tai-An</creatorcontrib><creatorcontrib>Chou, Steven Chun-Wei</creatorcontrib><creatorcontrib>Wang, Lee-Ho</creatorcontrib><creatorcontrib>Chou, Pi-Tai</creatorcontrib><title>Probing Ligand Binding to Thromboxane Synthase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Computer Simulation</subject><subject>Cytochrome P-450 CYP3A - genetics</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes</subject><subject>Heme - metabolism</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Naphthalenesulfonates - metabolism</subject><subject>Oxazines</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrometry, Fluorescence</subject><subject>Thromboxane-A Synthase - chemistry</subject><subject>Thromboxane-A Synthase - genetics</subject><subject>Thromboxane-A Synthase - metabolism</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIXV2N7tJjrb4BQUF63nZr7QpTbbuJmD_vVtae_I0DDy8zLwIXWMYYyD4QdUUcAbQnaAhZgTSrCzZKRoCAE9JyWGALkJYxTWDPDtHA0IpySmlQzT-8E7V7SKZ1QvZmmRSt2a3di6ZL71rlPuRrU0-t223lMFeorNKroO9OswR-np-mk9f09n7y9v0cZZKilmXcqgwU8yanDDQhlAOFqtK5pIX1BjGjS6B47KSBdOS2koxWegyM1aaoqScjtDdPnfj3XdvQyeaOmi7XsdjXB8EJkVOo8Q40vs91d6F4G0lNr5upN8KDGJXjzjWE-3NIbZXjTVH-ddHBLd7IHUQK9f7Nn75T9Av7ilqjg</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Chao, Wei-Chih</creator><creator>Lu, Jyh-Feng</creator><creator>Wang, Jinn-Shyan</creator><creator>Yang, Hsiao-Ching</creator><creator>Pan, Tai-An</creator><creator>Chou, Steven Chun-Wei</creator><creator>Wang, Lee-Ho</creator><creator>Chou, Pi-Tai</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130212</creationdate><title>Probing Ligand Binding to Thromboxane Synthase</title><author>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Computer Simulation</topic><topic>Cytochrome P-450 CYP3A - genetics</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes</topic><topic>Heme - metabolism</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Naphthalenesulfonates - metabolism</topic><topic>Oxazines</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrometry, Fluorescence</topic><topic>Thromboxane-A Synthase - chemistry</topic><topic>Thromboxane-A Synthase - genetics</topic><topic>Thromboxane-A Synthase - metabolism</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Wei-Chih</creatorcontrib><creatorcontrib>Lu, Jyh-Feng</creatorcontrib><creatorcontrib>Wang, Jinn-Shyan</creatorcontrib><creatorcontrib>Yang, Hsiao-Ching</creatorcontrib><creatorcontrib>Pan, Tai-An</creatorcontrib><creatorcontrib>Chou, Steven Chun-Wei</creatorcontrib><creatorcontrib>Wang, Lee-Ho</creatorcontrib><creatorcontrib>Chou, Pi-Tai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Wei-Chih</au><au>Lu, Jyh-Feng</au><au>Wang, Jinn-Shyan</au><au>Yang, Hsiao-Ching</au><au>Pan, Tai-An</au><au>Chou, Steven Chun-Wei</au><au>Wang, Lee-Ho</au><au>Chou, Pi-Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Ligand Binding to Thromboxane Synthase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-02-12</date><risdate>2013</risdate><volume>52</volume><issue>6</issue><spage>1113</spage><epage>1121</epage><pages>1113-1121</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23327333</pmid><doi>10.1021/bi301400t</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2013-02, Vol.52 (6), p.1113-1121
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1287389311
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Binding Sites
Catalysis
Computer Simulation
Cytochrome P-450 CYP3A - genetics
Cytochrome P-450 CYP3A - metabolism
Fluorescence Resonance Energy Transfer
Fluorescent Dyes
Heme - metabolism
Humans
Models, Chemical
Models, Molecular
Molecular Sequence Data
Mutation - genetics
Naphthalenesulfonates - metabolism
Oxazines
Protein Conformation
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Spectrometry, Fluorescence
Thromboxane-A Synthase - chemistry
Thromboxane-A Synthase - genetics
Thromboxane-A Synthase - metabolism
Tryptophan - chemistry
Tryptophan - metabolism
title Probing Ligand Binding to Thromboxane Synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Ligand%20Binding%20to%20Thromboxane%20Synthase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Chao,%20Wei-Chih&rft.date=2013-02-12&rft.volume=52&rft.issue=6&rft.spage=1113&rft.epage=1121&rft.pages=1113-1121&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi301400t&rft_dat=%3Cproquest_cross%3E1287389311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287389311&rft_id=info:pmid/23327333&rfr_iscdi=true