Probing Ligand Binding to Thromboxane Synthase
Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic a...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2013-02, Vol.52 (6), p.1113-1121 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1121 |
---|---|
container_issue | 6 |
container_start_page | 1113 |
container_title | Biochemistry (Easton) |
container_volume | 52 |
creator | Chao, Wei-Chih Lu, Jyh-Feng Wang, Jinn-Shyan Yang, Hsiao-Ching Pan, Tai-An Chou, Steven Chun-Wei Wang, Lee-Ho Chou, Pi-Tai |
description | Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS. |
doi_str_mv | 10.1021/bi301400t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1287389311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1287389311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</originalsourceid><addsrcrecordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIXV2N7tJjrb4BQUF63nZr7QpTbbuJmD_vVtae_I0DDy8zLwIXWMYYyD4QdUUcAbQnaAhZgTSrCzZKRoCAE9JyWGALkJYxTWDPDtHA0IpySmlQzT-8E7V7SKZ1QvZmmRSt2a3di6ZL71rlPuRrU0-t223lMFeorNKroO9OswR-np-mk9f09n7y9v0cZZKilmXcqgwU8yanDDQhlAOFqtK5pIX1BjGjS6B47KSBdOS2koxWegyM1aaoqScjtDdPnfj3XdvQyeaOmi7XsdjXB8EJkVOo8Q40vs91d6F4G0lNr5upN8KDGJXjzjWE-3NIbZXjTVH-ddHBLd7IHUQK9f7Nn75T9Av7ilqjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287389311</pqid></control><display><type>article</type><title>Probing Ligand Binding to Thromboxane Synthase</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</creator><creatorcontrib>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</creatorcontrib><description>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi301400t</identifier><identifier>PMID: 23327333</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Binding Sites ; Catalysis ; Computer Simulation ; Cytochrome P-450 CYP3A - genetics ; Cytochrome P-450 CYP3A - metabolism ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Heme - metabolism ; Humans ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Naphthalenesulfonates - metabolism ; Oxazines ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Spectrometry, Fluorescence ; Thromboxane-A Synthase - chemistry ; Thromboxane-A Synthase - genetics ; Thromboxane-A Synthase - metabolism ; Tryptophan - chemistry ; Tryptophan - metabolism</subject><ispartof>Biochemistry (Easton), 2013-02, Vol.52 (6), p.1113-1121</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</citedby><cites>FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi301400t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi301400t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23327333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chao, Wei-Chih</creatorcontrib><creatorcontrib>Lu, Jyh-Feng</creatorcontrib><creatorcontrib>Wang, Jinn-Shyan</creatorcontrib><creatorcontrib>Yang, Hsiao-Ching</creatorcontrib><creatorcontrib>Pan, Tai-An</creatorcontrib><creatorcontrib>Chou, Steven Chun-Wei</creatorcontrib><creatorcontrib>Wang, Lee-Ho</creatorcontrib><creatorcontrib>Chou, Pi-Tai</creatorcontrib><title>Probing Ligand Binding to Thromboxane Synthase</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Computer Simulation</subject><subject>Cytochrome P-450 CYP3A - genetics</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes</subject><subject>Heme - metabolism</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Naphthalenesulfonates - metabolism</subject><subject>Oxazines</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrometry, Fluorescence</subject><subject>Thromboxane-A Synthase - chemistry</subject><subject>Thromboxane-A Synthase - genetics</subject><subject>Thromboxane-A Synthase - metabolism</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1Lw0AQBuBFFFurB_-A5CLoIXV2N7tJjrb4BQUF63nZr7QpTbbuJmD_vVtae_I0DDy8zLwIXWMYYyD4QdUUcAbQnaAhZgTSrCzZKRoCAE9JyWGALkJYxTWDPDtHA0IpySmlQzT-8E7V7SKZ1QvZmmRSt2a3di6ZL71rlPuRrU0-t223lMFeorNKroO9OswR-np-mk9f09n7y9v0cZZKilmXcqgwU8yanDDQhlAOFqtK5pIX1BjGjS6B47KSBdOS2koxWegyM1aaoqScjtDdPnfj3XdvQyeaOmi7XsdjXB8EJkVOo8Q40vs91d6F4G0lNr5upN8KDGJXjzjWE-3NIbZXjTVH-ddHBLd7IHUQK9f7Nn75T9Av7ilqjg</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Chao, Wei-Chih</creator><creator>Lu, Jyh-Feng</creator><creator>Wang, Jinn-Shyan</creator><creator>Yang, Hsiao-Ching</creator><creator>Pan, Tai-An</creator><creator>Chou, Steven Chun-Wei</creator><creator>Wang, Lee-Ho</creator><creator>Chou, Pi-Tai</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130212</creationdate><title>Probing Ligand Binding to Thromboxane Synthase</title><author>Chao, Wei-Chih ; Lu, Jyh-Feng ; Wang, Jinn-Shyan ; Yang, Hsiao-Ching ; Pan, Tai-An ; Chou, Steven Chun-Wei ; Wang, Lee-Ho ; Chou, Pi-Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-60f15b5ed7250cd2360e1bfa7a683dd56dc90619fa85ca3efb5a8c94dead89363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Computer Simulation</topic><topic>Cytochrome P-450 CYP3A - genetics</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes</topic><topic>Heme - metabolism</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Naphthalenesulfonates - metabolism</topic><topic>Oxazines</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrometry, Fluorescence</topic><topic>Thromboxane-A Synthase - chemistry</topic><topic>Thromboxane-A Synthase - genetics</topic><topic>Thromboxane-A Synthase - metabolism</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chao, Wei-Chih</creatorcontrib><creatorcontrib>Lu, Jyh-Feng</creatorcontrib><creatorcontrib>Wang, Jinn-Shyan</creatorcontrib><creatorcontrib>Yang, Hsiao-Ching</creatorcontrib><creatorcontrib>Pan, Tai-An</creatorcontrib><creatorcontrib>Chou, Steven Chun-Wei</creatorcontrib><creatorcontrib>Wang, Lee-Ho</creatorcontrib><creatorcontrib>Chou, Pi-Tai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chao, Wei-Chih</au><au>Lu, Jyh-Feng</au><au>Wang, Jinn-Shyan</au><au>Yang, Hsiao-Ching</au><au>Pan, Tai-An</au><au>Chou, Steven Chun-Wei</au><au>Wang, Lee-Ho</au><au>Chou, Pi-Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Ligand Binding to Thromboxane Synthase</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-02-12</date><risdate>2013</risdate><volume>52</volume><issue>6</issue><spage>1113</spage><epage>1121</epage><pages>1113-1121</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Various fluorescence experiments and computer simulations were utilized to gain further understanding of thromboxane A2 synthase (TXAS), which catalyzes an isomerization of prostaglandins H2 to give rise to thromboxane A2 along with a fragmentation reaction to 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde. In this study, 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS) was utilized as a probe to assess the spatial relationship and binding dynamics of ligand–TXAS interactions by steady-state and time-resolved fluorescence spectroscopy. The proximity between TNS and each of the five tryptophan (Trp) residues in TXAS was examined through the fluorescence quenching of Trp by TNS via an energy transfer process. The fluorescence quenching of Trp by TNS was abolished in the W65F mutant, indicating that Trp65 is the major contributor to account for energy transfer with TNS. Furthermore, both competitive binding experiments and the computer-simulated TXAS structure with clotrimazole as a heme ligand strongly suggest that TXAS has a large active site that can simultaneously accommodate TNS and clotrimazole without mutual interaction between TNS and heme. Displacement of TNS by Nile Red, a fluorescence dye sensitive to environmental polarity, indicates that the TNS binding site in TXAS is likely to be hydrophobic. The Phe cluster packing near the binding site of TNS may be involved in facilitating the binding of multiple ligands to the large active site of TXAS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23327333</pmid><doi>10.1021/bi301400t</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2013-02, Vol.52 (6), p.1113-1121 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1287389311 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Binding Sites Catalysis Computer Simulation Cytochrome P-450 CYP3A - genetics Cytochrome P-450 CYP3A - metabolism Fluorescence Resonance Energy Transfer Fluorescent Dyes Heme - metabolism Humans Models, Chemical Models, Molecular Molecular Sequence Data Mutation - genetics Naphthalenesulfonates - metabolism Oxazines Protein Conformation Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Homology, Amino Acid Spectrometry, Fluorescence Thromboxane-A Synthase - chemistry Thromboxane-A Synthase - genetics Thromboxane-A Synthase - metabolism Tryptophan - chemistry Tryptophan - metabolism |
title | Probing Ligand Binding to Thromboxane Synthase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Ligand%20Binding%20to%20Thromboxane%20Synthase&rft.jtitle=Biochemistry%20(Easton)&rft.au=Chao,%20Wei-Chih&rft.date=2013-02-12&rft.volume=52&rft.issue=6&rft.spage=1113&rft.epage=1121&rft.pages=1113-1121&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi301400t&rft_dat=%3Cproquest_cross%3E1287389311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287389311&rft_id=info:pmid/23327333&rfr_iscdi=true |