The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study

[Display omitted] ► F-actin movement on HMM coated surface is regulated by electro-orientation torque. ► The aligned movement is proportional to the strength of applied electric field. ► The aligned movement is frequency-dependent. ► The electrothermal effect is observed by means of F-actin velocity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2013-03, Vol.394, p.312-318
Hauptverfasser: Lee, Yongkuk, Famouri, Parviz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue
container_start_page 312
container_title Journal of colloid and interface science
container_volume 394
creator Lee, Yongkuk
Famouri, Parviz
description [Display omitted] ► F-actin movement on HMM coated surface is regulated by electro-orientation torque. ► The aligned movement is proportional to the strength of applied electric field. ► The aligned movement is frequency-dependent. ► The electrothermal effect is observed by means of F-actin velocity measurement. The role of actin–myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin–myosin nanotransport system to build functional nanodevices in future work.
doi_str_mv 10.1016/j.jcis.2012.11.072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1286944480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197971201421X</els_id><sourcerecordid>1286944480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6a30fc1beea2463c431d1d017b1e220b0a8ad621d41bd4490e5ac768313e1b633</originalsourceid><addsrcrecordid>eNp9kL2O1DAURiMEYoeFF6AAN0g0Cb62Yydom9GIP2klCnZry7FvWI-SeLCTFdPxDrwhT4KjGbakuoXP_fzdUxQvgVZAQb7bV3vrU8UosAqgooo9KjZA27pUQPnjYkMpg7JVrboonqW0pxSgrtunxQXjXAnBYVPc3dwhGcM9jjjNJPTE2NlPf379Ho8h-Yl0PoxhQLsMJpLBT5jHGOYQyTI5jGS7I5if5-gt6T0OLr0n24ngzwNGv2aagaR5ccfnxZPeDAlfnOdlcfvxw83uc3n99dOX3fa6tELJuZSG095Ch2iYkNzmkg4cBdUBMkY7ahrjJAMnoHNCtBRrY5VsOHCETnJ-Wbw95R5i-LFgmvXok8VhMBOGJWlgjWyFEA3NKDuhNoaUIvb6kDubeNRA9WpY7_VqWK-GNYDOhvPSq3P-0o3oHlb-Kc3AmzNgkjVDH820ZjxwCmQ-pM3c6xPXm6DN95iZ22_5J0kpVQ1TdSauTgRmX_ceo07W42TR-ZiVaxf8_5r-BdAIpCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286944480</pqid></control><display><type>article</type><title>The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Yongkuk ; Famouri, Parviz</creator><creatorcontrib>Lee, Yongkuk ; Famouri, Parviz</creatorcontrib><description>[Display omitted] ► F-actin movement on HMM coated surface is regulated by electro-orientation torque. ► The aligned movement is proportional to the strength of applied electric field. ► The aligned movement is frequency-dependent. ► The electrothermal effect is observed by means of F-actin velocity measurement. The role of actin–myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin–myosin nanotransport system to build functional nanodevices in future work.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2012.11.072</identifier><identifier>PMID: 23374431</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>AC electric field ; actin ; Actin Cytoskeleton - metabolism ; Actin Cytoskeleton - ultrastructure ; Actin filament ; Actins - metabolism ; Actins - ultrastructure ; Animals ; Chemistry ; Dielectrophoresis ; electric field ; Electricity ; Electro-orientation ; Electrochemistry ; electrodes ; Electrothermal effect ; Equipment Design ; Exact sciences and technology ; General and physical chemistry ; Microelectrodes ; microfilaments ; Microscopy - instrumentation ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; motors ; Movement ; Myosin ; Myosins - metabolism ; Myosins - ultrastructure ; Rabbits ; torque</subject><ispartof>Journal of colloid and interface science, 2013-03, Vol.394, p.312-318</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6a30fc1beea2463c431d1d017b1e220b0a8ad621d41bd4490e5ac768313e1b633</citedby><cites>FETCH-LOGICAL-c476t-6a30fc1beea2463c431d1d017b1e220b0a8ad621d41bd4490e5ac768313e1b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2012.11.072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27162209$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23374431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yongkuk</creatorcontrib><creatorcontrib>Famouri, Parviz</creatorcontrib><title>The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] ► F-actin movement on HMM coated surface is regulated by electro-orientation torque. ► The aligned movement is proportional to the strength of applied electric field. ► The aligned movement is frequency-dependent. ► The electrothermal effect is observed by means of F-actin velocity measurement. The role of actin–myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin–myosin nanotransport system to build functional nanodevices in future work.</description><subject>AC electric field</subject><subject>actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actin Cytoskeleton - ultrastructure</subject><subject>Actin filament</subject><subject>Actins - metabolism</subject><subject>Actins - ultrastructure</subject><subject>Animals</subject><subject>Chemistry</subject><subject>Dielectrophoresis</subject><subject>electric field</subject><subject>Electricity</subject><subject>Electro-orientation</subject><subject>Electrochemistry</subject><subject>electrodes</subject><subject>Electrothermal effect</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microelectrodes</subject><subject>microfilaments</subject><subject>Microscopy - instrumentation</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>motors</subject><subject>Movement</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Myosins - ultrastructure</subject><subject>Rabbits</subject><subject>torque</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL2O1DAURiMEYoeFF6AAN0g0Cb62Yydom9GIP2klCnZry7FvWI-SeLCTFdPxDrwhT4KjGbakuoXP_fzdUxQvgVZAQb7bV3vrU8UosAqgooo9KjZA27pUQPnjYkMpg7JVrboonqW0pxSgrtunxQXjXAnBYVPc3dwhGcM9jjjNJPTE2NlPf379Ho8h-Yl0PoxhQLsMJpLBT5jHGOYQyTI5jGS7I5if5-gt6T0OLr0n24ngzwNGv2aagaR5ccfnxZPeDAlfnOdlcfvxw83uc3n99dOX3fa6tELJuZSG095Ch2iYkNzmkg4cBdUBMkY7ahrjJAMnoHNCtBRrY5VsOHCETnJ-Wbw95R5i-LFgmvXok8VhMBOGJWlgjWyFEA3NKDuhNoaUIvb6kDubeNRA9WpY7_VqWK-GNYDOhvPSq3P-0o3oHlb-Kc3AmzNgkjVDH820ZjxwCmQ-pM3c6xPXm6DN95iZ22_5J0kpVQ1TdSauTgRmX_ceo07W42TR-ZiVaxf8_5r-BdAIpCE</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Lee, Yongkuk</creator><creator>Famouri, Parviz</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130315</creationdate><title>The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study</title><author>Lee, Yongkuk ; Famouri, Parviz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6a30fc1beea2463c431d1d017b1e220b0a8ad621d41bd4490e5ac768313e1b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AC electric field</topic><topic>actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actin Cytoskeleton - ultrastructure</topic><topic>Actin filament</topic><topic>Actins - metabolism</topic><topic>Actins - ultrastructure</topic><topic>Animals</topic><topic>Chemistry</topic><topic>Dielectrophoresis</topic><topic>electric field</topic><topic>Electricity</topic><topic>Electro-orientation</topic><topic>Electrochemistry</topic><topic>electrodes</topic><topic>Electrothermal effect</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microelectrodes</topic><topic>microfilaments</topic><topic>Microscopy - instrumentation</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>motors</topic><topic>Movement</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Myosins - ultrastructure</topic><topic>Rabbits</topic><topic>torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yongkuk</creatorcontrib><creatorcontrib>Famouri, Parviz</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yongkuk</au><au>Famouri, Parviz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2013-03-15</date><risdate>2013</risdate><volume>394</volume><spage>312</spage><epage>318</epage><pages>312-318</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>[Display omitted] ► F-actin movement on HMM coated surface is regulated by electro-orientation torque. ► The aligned movement is proportional to the strength of applied electric field. ► The aligned movement is frequency-dependent. ► The electrothermal effect is observed by means of F-actin velocity measurement. The role of actin–myosin as a biomolecular linear motor is considered a transport system at nanoscale because of their size, efficiency and functionality. To utilize the ability to transport, it is essential to control the random movement of actin filaments (F-actin) on myosin coated substrate. In the presence of an alternating current (AC) electric field, the direction of F-actin movement is regulated by electro-orientation torque and, as a result, its movement is perpendicularly toward the electrode edges. Our data confirm such aligned movement is proportional to the strength of applied electric field. Interestingly, the aligned movement is found frequency-dependent and the electrothermal effect is observed by means of the velocity measurement of aligned F-actin movement. The findings in this study may provide constructive information for manipulating actin–myosin nanotransport system to build functional nanodevices in future work.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23374431</pmid><doi>10.1016/j.jcis.2012.11.072</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2013-03, Vol.394, p.312-318
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1286944480
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects AC electric field
actin
Actin Cytoskeleton - metabolism
Actin Cytoskeleton - ultrastructure
Actin filament
Actins - metabolism
Actins - ultrastructure
Animals
Chemistry
Dielectrophoresis
electric field
Electricity
Electro-orientation
Electrochemistry
electrodes
Electrothermal effect
Equipment Design
Exact sciences and technology
General and physical chemistry
Microelectrodes
microfilaments
Microscopy - instrumentation
Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)
motors
Movement
Myosin
Myosins - metabolism
Myosins - ultrastructure
Rabbits
torque
title The movement of actin–myosin biomolecular linear motor under AC electric fields: An experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20movement%20of%20actin%E2%80%93myosin%20biomolecular%20linear%20motor%20under%20AC%20electric%20fields:%20An%20experimental%20study&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Lee,%20Yongkuk&rft.date=2013-03-15&rft.volume=394&rft.spage=312&rft.epage=318&rft.pages=312-318&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2012.11.072&rft_dat=%3Cproquest_cross%3E1286944480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286944480&rft_id=info:pmid/23374431&rft_els_id=S002197971201421X&rfr_iscdi=true