Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development

Summary Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular oral microbiology 2013-02, Vol.28 (1), p.54-69
Hauptverfasser: Bandara, H.M.H.N., K Cheung, B.P., Watt, R.M., Jin, L.J., Samaranayake, L.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 54
container_title Molecular oral microbiology
container_volume 28
creator Bandara, H.M.H.N.
K Cheung, B.P.
Watt, R.M.
Jin, L.J.
Samaranayake, L.P.
description Summary Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT‐reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha‐specific genes (HSGs) and transcription factor EFG1 expression were assessed by real‐time polymerase chain reaction and two‐dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS‐treated C. albicans biofilms were significantly lower (P 
doi_str_mv 10.1111/omi.12006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285103120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273434683</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4166-fb3082146a72b97b38ef6e2705e314a5068ec30f1e49fd0828b3ab3160ad0523</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhqOqVUGUQ_9AZamXXgL-ip0cq1X5kKAgFS29WZNksmua2KmdtOxf4FdjWLqHnpjLjPQ-70gzb5Z9ZPSIpTr2gz1inFL1JtvnVLKcUSbf7maq9rLDGO9oKsGk1vp9tscFq6TUfD97uI44t37wDiIBDPPKOh-B9Hb0o-83EZpmDcG2SKxb29pOkSzAtbYFAn1tG3CRrDfjGpB0PgwwWe9IApI6YYhkhQ4J3o8BY3yS2jlYtyK19Z3tB9LiH-z9OKCbPmTvOugjHr70g-zm5NvN4iy_uDo9X3y9yK1kSuVdLWjJmVSgeV3pWpTYKeSaFpjug4KqEhtBO4ay6tqElrWAWjBFoaUFFwfZl-3aMfjfM8bJDDY22Pfg0M_RMF4WLL2K01egWkghVSkS-vk_9M7PwaU7DNNUVaXUrErUpxdqrgdszRjsAGFj_uWRgOMt8Nf2uNnpjJqnrE3K2jxnba4uz5-H5Mi3DhsnvN85IPwySgtdmNvvp2a5XP64LX4uDROPF7SsDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706984719</pqid></control><display><type>article</type><title>Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bandara, H.M.H.N. ; K Cheung, B.P. ; Watt, R.M. ; Jin, L.J. ; Samaranayake, L.P.</creator><creatorcontrib>Bandara, H.M.H.N. ; K Cheung, B.P. ; Watt, R.M. ; Jin, L.J. ; Samaranayake, L.P.</creatorcontrib><description>Summary Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT‐reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha‐specific genes (HSGs) and transcription factor EFG1 expression were assessed by real‐time polymerase chain reaction and two‐dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS‐treated C. albicans biofilms were significantly lower (P &lt; 0.05). There were higher proportions of budding yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P &lt; 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin‐like protein, potential reductase‐flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis‐associated mechanisms during candidal filamentation.</description><identifier>ISSN: 2041-1006</identifier><identifier>EISSN: 2041-1014</identifier><identifier>DOI: 10.1111/omi.12006</identifier><identifier>PMID: 23194472</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphatases - drug effects ; biofilm ; Biofilms - growth &amp; development ; Candida ; Candida albicans ; Candida albicans - drug effects ; Candida albicans - genetics ; Candida albicans - physiology ; Cyclic AMP - analysis ; Dentistry ; DNA-Binding Proteins - drug effects ; Fungal Proteins - drug effects ; Fungal Proteins - genetics ; Gene Expression Regulation, Fungal - drug effects ; Glycine Hydroxymethyltransferase - drug effects ; glycolysis ; Glycolysis - drug effects ; Humans ; Hydrolases - drug effects ; hypha ; Hyphae - drug effects ; Hyphae - genetics ; Klebsiella pneumoniae - physiology ; lipopolysaccharide ; Lipopolysaccharides - pharmacology ; Membrane Glycoproteins - drug effects ; Microbial Interactions ; NADH, NADPH Oxidoreductases - drug effects ; Phosphoglycerate Kinase - drug effects ; Proteome - genetics ; Pseudomonas ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; Saccharomyces cerevisiae ; Sugar Alcohol Dehydrogenases - drug effects ; Transcription Factors - drug effects ; Transcription, Genetic - drug effects</subject><ispartof>Molecular oral microbiology, 2013-02, Vol.28 (1), p.54-69</ispartof><rights>2012 John Wiley &amp; Sons A/S</rights><rights>2012 John Wiley &amp; Sons A/S.</rights><rights>Copyright © 2013 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fomi.12006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fomi.12006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23194472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandara, H.M.H.N.</creatorcontrib><creatorcontrib>K Cheung, B.P.</creatorcontrib><creatorcontrib>Watt, R.M.</creatorcontrib><creatorcontrib>Jin, L.J.</creatorcontrib><creatorcontrib>Samaranayake, L.P.</creatorcontrib><title>Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development</title><title>Molecular oral microbiology</title><addtitle>Mol oral Microbiol</addtitle><description>Summary Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT‐reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha‐specific genes (HSGs) and transcription factor EFG1 expression were assessed by real‐time polymerase chain reaction and two‐dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS‐treated C. albicans biofilms were significantly lower (P &lt; 0.05). There were higher proportions of budding yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P &lt; 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin‐like protein, potential reductase‐flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis‐associated mechanisms during candidal filamentation.</description><subject>Adenosine Triphosphatases - drug effects</subject><subject>biofilm</subject><subject>Biofilms - growth &amp; development</subject><subject>Candida</subject><subject>Candida albicans</subject><subject>Candida albicans - drug effects</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - physiology</subject><subject>Cyclic AMP - analysis</subject><subject>Dentistry</subject><subject>DNA-Binding Proteins - drug effects</subject><subject>Fungal Proteins - drug effects</subject><subject>Fungal Proteins - genetics</subject><subject>Gene Expression Regulation, Fungal - drug effects</subject><subject>Glycine Hydroxymethyltransferase - drug effects</subject><subject>glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Humans</subject><subject>Hydrolases - drug effects</subject><subject>hypha</subject><subject>Hyphae - drug effects</subject><subject>Hyphae - genetics</subject><subject>Klebsiella pneumoniae - physiology</subject><subject>lipopolysaccharide</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Membrane Glycoproteins - drug effects</subject><subject>Microbial Interactions</subject><subject>NADH, NADPH Oxidoreductases - drug effects</subject><subject>Phosphoglycerate Kinase - drug effects</subject><subject>Proteome - genetics</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Saccharomyces cerevisiae</subject><subject>Sugar Alcohol Dehydrogenases - drug effects</subject><subject>Transcription Factors - drug effects</subject><subject>Transcription, Genetic - drug effects</subject><issn>2041-1006</issn><issn>2041-1014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhqOqVUGUQ_9AZamXXgL-ip0cq1X5kKAgFS29WZNksmua2KmdtOxf4FdjWLqHnpjLjPQ-70gzb5Z9ZPSIpTr2gz1inFL1JtvnVLKcUSbf7maq9rLDGO9oKsGk1vp9tscFq6TUfD97uI44t37wDiIBDPPKOh-B9Hb0o-83EZpmDcG2SKxb29pOkSzAtbYFAn1tG3CRrDfjGpB0PgwwWe9IApI6YYhkhQ4J3o8BY3yS2jlYtyK19Z3tB9LiH-z9OKCbPmTvOugjHr70g-zm5NvN4iy_uDo9X3y9yK1kSuVdLWjJmVSgeV3pWpTYKeSaFpjug4KqEhtBO4ay6tqElrWAWjBFoaUFFwfZl-3aMfjfM8bJDDY22Pfg0M_RMF4WLL2K01egWkghVSkS-vk_9M7PwaU7DNNUVaXUrErUpxdqrgdszRjsAGFj_uWRgOMt8Nf2uNnpjJqnrE3K2jxnba4uz5-H5Mi3DhsnvN85IPwySgtdmNvvp2a5XP64LX4uDROPF7SsDg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Bandara, H.M.H.N.</creator><creator>K Cheung, B.P.</creator><creator>Watt, R.M.</creator><creator>Jin, L.J.</creator><creator>Samaranayake, L.P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope><scope>RC3</scope></search><sort><creationdate>201302</creationdate><title>Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development</title><author>Bandara, H.M.H.N. ; K Cheung, B.P. ; Watt, R.M. ; Jin, L.J. ; Samaranayake, L.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4166-fb3082146a72b97b38ef6e2705e314a5068ec30f1e49fd0828b3ab3160ad0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - drug effects</topic><topic>biofilm</topic><topic>Biofilms - growth &amp; development</topic><topic>Candida</topic><topic>Candida albicans</topic><topic>Candida albicans - drug effects</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - physiology</topic><topic>Cyclic AMP - analysis</topic><topic>Dentistry</topic><topic>DNA-Binding Proteins - drug effects</topic><topic>Fungal Proteins - drug effects</topic><topic>Fungal Proteins - genetics</topic><topic>Gene Expression Regulation, Fungal - drug effects</topic><topic>Glycine Hydroxymethyltransferase - drug effects</topic><topic>glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Humans</topic><topic>Hydrolases - drug effects</topic><topic>hypha</topic><topic>Hyphae - drug effects</topic><topic>Hyphae - genetics</topic><topic>Klebsiella pneumoniae - physiology</topic><topic>lipopolysaccharide</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Membrane Glycoproteins - drug effects</topic><topic>Microbial Interactions</topic><topic>NADH, NADPH Oxidoreductases - drug effects</topic><topic>Phosphoglycerate Kinase - drug effects</topic><topic>Proteome - genetics</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Saccharomyces cerevisiae</topic><topic>Sugar Alcohol Dehydrogenases - drug effects</topic><topic>Transcription Factors - drug effects</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandara, H.M.H.N.</creatorcontrib><creatorcontrib>K Cheung, B.P.</creatorcontrib><creatorcontrib>Watt, R.M.</creatorcontrib><creatorcontrib>Jin, L.J.</creatorcontrib><creatorcontrib>Samaranayake, L.P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular oral microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandara, H.M.H.N.</au><au>K Cheung, B.P.</au><au>Watt, R.M.</au><au>Jin, L.J.</au><au>Samaranayake, L.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development</atitle><jtitle>Molecular oral microbiology</jtitle><addtitle>Mol oral Microbiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>28</volume><issue>1</issue><spage>54</spage><epage>69</epage><pages>54-69</pages><issn>2041-1006</issn><eissn>2041-1014</eissn><abstract>Summary Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT‐reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha‐specific genes (HSGs) and transcription factor EFG1 expression were assessed by real‐time polymerase chain reaction and two‐dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS‐treated C. albicans biofilms were significantly lower (P &lt; 0.05). There were higher proportions of budding yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P &lt; 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin‐like protein, potential reductase‐flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis‐associated mechanisms during candidal filamentation.</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>23194472</pmid><doi>10.1111/omi.12006</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-1006
ispartof Molecular oral microbiology, 2013-02, Vol.28 (1), p.54-69
issn 2041-1006
2041-1014
language eng
recordid cdi_proquest_miscellaneous_1285103120
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenosine Triphosphatases - drug effects
biofilm
Biofilms - growth & development
Candida
Candida albicans
Candida albicans - drug effects
Candida albicans - genetics
Candida albicans - physiology
Cyclic AMP - analysis
Dentistry
DNA-Binding Proteins - drug effects
Fungal Proteins - drug effects
Fungal Proteins - genetics
Gene Expression Regulation, Fungal - drug effects
Glycine Hydroxymethyltransferase - drug effects
glycolysis
Glycolysis - drug effects
Humans
Hydrolases - drug effects
hypha
Hyphae - drug effects
Hyphae - genetics
Klebsiella pneumoniae - physiology
lipopolysaccharide
Lipopolysaccharides - pharmacology
Membrane Glycoproteins - drug effects
Microbial Interactions
NADH, NADPH Oxidoreductases - drug effects
Phosphoglycerate Kinase - drug effects
Proteome - genetics
Pseudomonas
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Saccharomyces cerevisiae
Sugar Alcohol Dehydrogenases - drug effects
Transcription Factors - drug effects
Transcription, Genetic - drug effects
title Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudomonas%20aeruginosa%20lipopolysaccharide%20inhibits%20Candida%20albicans%20hyphae%20formation%20and%20alters%20gene%20expression%20during%20biofilm%20development&rft.jtitle=Molecular%20oral%20microbiology&rft.au=Bandara,%20H.M.H.N.&rft.date=2013-02&rft.volume=28&rft.issue=1&rft.spage=54&rft.epage=69&rft.pages=54-69&rft.issn=2041-1006&rft.eissn=2041-1014&rft_id=info:doi/10.1111/omi.12006&rft_dat=%3Cproquest_pubme%3E1273434683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706984719&rft_id=info:pmid/23194472&rfr_iscdi=true