The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells
Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove t...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2013-01, Vol.89 (1), p.163-172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | Photochemistry and photobiology |
container_volume | 89 |
creator | Sawamoto, Mari Imai, Takafumi Umeda, Mana Fukuda, Koji Kataoka, Takao Taketani, Shigeru |
description | Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions.
The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin. |
doi_str_mv | 10.1111/j.1751-1097.2012.01215.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285102320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273168326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEYsrAKyBLbNgk-Ce2kwWLqp2fStVQ0KDpznKTW5qS2MFOIH2Qed9xaOmC1ViyfG1_5_haJ4oQwQkJ49M-IZKTmOBcJhQTmoRJeDK8iCbni5fRBGNG4kxwfhG98X6PMUlzSV5HF5RmgqY0nUSP9ztALWfxHFowJZgOXQ2tA-8ra5DdomunOz1UBs2s6ZytPeLxtKmMreF3X1emKtC0qMp4Ycq-gDJsir7pa92d9CtnO9ta1-4OLrgs1kibEq124TSe60b_ADSaa1OAs71HM6hr_zZ6tdW1h3en9TL6fn11P7uNl19uFrPpMi44S3mccrGVuQCAcktYXmrALE8zUUAuN3JDKeRQYolTIEIDzUCmUAi8EZwIkVLGLqOPR9_W2V89-E41lS9CB9pAaEYRmnGCKaP4GahkRGSMioB--A_d296Z8JFACZnhjEgaqOxIFc5672CrWlc12h0UwWpMWe3VGKYaw1RjyupvymoI0venB_pNA-VZ-C_WAHw-An-qGg7PNlar29VYBX181Fe-g-Gs1-6nEpJJrh7ubtTD8u7rt_l6qdbsCa0txLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267808172</pqid></control><display><type>article</type><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</creator><creatorcontrib>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</creatorcontrib><description>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions.
The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/j.1751-1097.2012.01215.x</identifier><identifier>PMID: 22862424</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Aminolevulinic Acid - metabolism ; Aminolevulinic Acid - pharmacology ; Animals ; Apoptosis ; Biosynthesis ; Cancer ; Cell Line, Tumor ; Ferrochelatase - genetics ; Ferrochelatase - metabolism ; Frataxin ; Gene Expression Regulation, Neoplastic ; Homeostasis ; Humans ; Iron - metabolism ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Mice ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Oxidative stress ; Promoter Regions, Genetic ; Protein Binding ; Proteins ; Protoporphyrins - biosynthesis ; Response Elements ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Rodents ; Signal Transduction ; Tumor Suppressor Protein p53 - antagonists & inhibitors ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Photochemistry and photobiology, 2013-01, Vol.89 (1), p.163-172</ispartof><rights>2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology</rights><rights>2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.</rights><rights>Copyright Blackwell Publishing Ltd. Jan/Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</citedby><cites>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1751-1097.2012.01215.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1751-1097.2012.01215.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22862424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sawamoto, Mari</creatorcontrib><creatorcontrib>Imai, Takafumi</creatorcontrib><creatorcontrib>Umeda, Mana</creatorcontrib><creatorcontrib>Fukuda, Koji</creatorcontrib><creatorcontrib>Kataoka, Takao</creatorcontrib><creatorcontrib>Taketani, Shigeru</creatorcontrib><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions.
The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</description><subject>Aminolevulinic Acid - metabolism</subject><subject>Aminolevulinic Acid - pharmacology</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Ferrochelatase - genetics</subject><subject>Ferrochelatase - metabolism</subject><subject>Frataxin</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Mice</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Oxidative stress</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Protoporphyrins - biosynthesis</subject><subject>Response Elements</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor Protein p53 - antagonists & inhibitors</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAUhSMEYsrAKyBLbNgk-Ce2kwWLqp2fStVQ0KDpznKTW5qS2MFOIH2Qed9xaOmC1ViyfG1_5_haJ4oQwQkJ49M-IZKTmOBcJhQTmoRJeDK8iCbni5fRBGNG4kxwfhG98X6PMUlzSV5HF5RmgqY0nUSP9ztALWfxHFowJZgOXQ2tA-8ra5DdomunOz1UBs2s6ZytPeLxtKmMreF3X1emKtC0qMp4Ycq-gDJsir7pa92d9CtnO9ta1-4OLrgs1kibEq124TSe60b_ADSaa1OAs71HM6hr_zZ6tdW1h3en9TL6fn11P7uNl19uFrPpMi44S3mccrGVuQCAcktYXmrALE8zUUAuN3JDKeRQYolTIEIDzUCmUAi8EZwIkVLGLqOPR9_W2V89-E41lS9CB9pAaEYRmnGCKaP4GahkRGSMioB--A_d296Z8JFACZnhjEgaqOxIFc5672CrWlc12h0UwWpMWe3VGKYaw1RjyupvymoI0venB_pNA-VZ-C_WAHw-An-qGg7PNlar29VYBX181Fe-g-Gs1-6nEpJJrh7ubtTD8u7rt_l6qdbsCa0txLk</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Sawamoto, Mari</creator><creator>Imai, Takafumi</creator><creator>Umeda, Mana</creator><creator>Fukuda, Koji</creator><creator>Kataoka, Takao</creator><creator>Taketani, Shigeru</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>201301</creationdate><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><author>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aminolevulinic Acid - metabolism</topic><topic>Aminolevulinic Acid - pharmacology</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Ferrochelatase - genetics</topic><topic>Ferrochelatase - metabolism</topic><topic>Frataxin</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Mice</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Oxidative stress</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Protoporphyrins - biosynthesis</topic><topic>Response Elements</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor Protein p53 - antagonists & inhibitors</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawamoto, Mari</creatorcontrib><creatorcontrib>Imai, Takafumi</creatorcontrib><creatorcontrib>Umeda, Mana</creatorcontrib><creatorcontrib>Fukuda, Koji</creatorcontrib><creatorcontrib>Kataoka, Takao</creatorcontrib><creatorcontrib>Taketani, Shigeru</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawamoto, Mari</au><au>Imai, Takafumi</au><au>Umeda, Mana</au><au>Fukuda, Koji</au><au>Kataoka, Takao</au><au>Taketani, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2013-01</date><risdate>2013</risdate><volume>89</volume><issue>1</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions.
The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>22862424</pmid><doi>10.1111/j.1751-1097.2012.01215.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2013-01, Vol.89 (1), p.163-172 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_1285102320 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aminolevulinic Acid - metabolism Aminolevulinic Acid - pharmacology Animals Apoptosis Biosynthesis Cancer Cell Line, Tumor Ferrochelatase - genetics Ferrochelatase - metabolism Frataxin Gene Expression Regulation, Neoplastic Homeostasis Humans Iron - metabolism Iron-Binding Proteins - genetics Iron-Binding Proteins - metabolism Mice Mitochondria - genetics Mitochondria - metabolism Mitochondria - radiation effects Oxidative stress Promoter Regions, Genetic Protein Binding Proteins Protoporphyrins - biosynthesis Response Elements RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Rodents Signal Transduction Tumor Suppressor Protein p53 - antagonists & inhibitors Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
title | The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20p53-Dependent%20Expression%20of%20Frataxin%20Controls%205-Aminolevulinic%20Acid-Induced%20Accumulation%20of%20Protoporphyrin%20IX%20and%20Photo-Damage%20in%20Cancerous%20Cells&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Sawamoto,%20Mari&rft.date=2013-01&rft.volume=89&rft.issue=1&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/j.1751-1097.2012.01215.x&rft_dat=%3Cproquest_cross%3E1273168326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267808172&rft_id=info:pmid/22862424&rfr_iscdi=true |