The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells

Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2013-01, Vol.89 (1), p.163-172
Hauptverfasser: Sawamoto, Mari, Imai, Takafumi, Umeda, Mana, Fukuda, Koji, Kataoka, Takao, Taketani, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 163
container_title Photochemistry and photobiology
container_volume 89
creator Sawamoto, Mari
Imai, Takafumi
Umeda, Mana
Fukuda, Koji
Kataoka, Takao
Taketani, Shigeru
description Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions. The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.
doi_str_mv 10.1111/j.1751-1097.2012.01215.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285102320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273168326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEYsrAKyBLbNgk-Ce2kwWLqp2fStVQ0KDpznKTW5qS2MFOIH2Qed9xaOmC1ViyfG1_5_haJ4oQwQkJ49M-IZKTmOBcJhQTmoRJeDK8iCbni5fRBGNG4kxwfhG98X6PMUlzSV5HF5RmgqY0nUSP9ztALWfxHFowJZgOXQ2tA-8ra5DdomunOz1UBs2s6ZytPeLxtKmMreF3X1emKtC0qMp4Ycq-gDJsir7pa92d9CtnO9ta1-4OLrgs1kibEq124TSe60b_ADSaa1OAs71HM6hr_zZ6tdW1h3en9TL6fn11P7uNl19uFrPpMi44S3mccrGVuQCAcktYXmrALE8zUUAuN3JDKeRQYolTIEIDzUCmUAi8EZwIkVLGLqOPR9_W2V89-E41lS9CB9pAaEYRmnGCKaP4GahkRGSMioB--A_d296Z8JFACZnhjEgaqOxIFc5672CrWlc12h0UwWpMWe3VGKYaw1RjyupvymoI0venB_pNA-VZ-C_WAHw-An-qGg7PNlar29VYBX181Fe-g-Gs1-6nEpJJrh7ubtTD8u7rt_l6qdbsCa0txLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267808172</pqid></control><display><type>article</type><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</creator><creatorcontrib>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</creatorcontrib><description>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions. The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/j.1751-1097.2012.01215.x</identifier><identifier>PMID: 22862424</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Aminolevulinic Acid - metabolism ; Aminolevulinic Acid - pharmacology ; Animals ; Apoptosis ; Biosynthesis ; Cancer ; Cell Line, Tumor ; Ferrochelatase - genetics ; Ferrochelatase - metabolism ; Frataxin ; Gene Expression Regulation, Neoplastic ; Homeostasis ; Humans ; Iron - metabolism ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Mice ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Oxidative stress ; Promoter Regions, Genetic ; Protein Binding ; Proteins ; Protoporphyrins - biosynthesis ; Response Elements ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Rodents ; Signal Transduction ; Tumor Suppressor Protein p53 - antagonists &amp; inhibitors ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Photochemistry and photobiology, 2013-01, Vol.89 (1), p.163-172</ispartof><rights>2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology</rights><rights>2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.</rights><rights>Copyright Blackwell Publishing Ltd. Jan/Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</citedby><cites>FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1751-1097.2012.01215.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1751-1097.2012.01215.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22862424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sawamoto, Mari</creatorcontrib><creatorcontrib>Imai, Takafumi</creatorcontrib><creatorcontrib>Umeda, Mana</creatorcontrib><creatorcontrib>Fukuda, Koji</creatorcontrib><creatorcontrib>Kataoka, Takao</creatorcontrib><creatorcontrib>Taketani, Shigeru</creatorcontrib><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions. The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</description><subject>Aminolevulinic Acid - metabolism</subject><subject>Aminolevulinic Acid - pharmacology</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Ferrochelatase - genetics</subject><subject>Ferrochelatase - metabolism</subject><subject>Frataxin</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Mice</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Oxidative stress</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Protoporphyrins - biosynthesis</subject><subject>Response Elements</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor Protein p53 - antagonists &amp; inhibitors</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAUhSMEYsrAKyBLbNgk-Ce2kwWLqp2fStVQ0KDpznKTW5qS2MFOIH2Qed9xaOmC1ViyfG1_5_haJ4oQwQkJ49M-IZKTmOBcJhQTmoRJeDK8iCbni5fRBGNG4kxwfhG98X6PMUlzSV5HF5RmgqY0nUSP9ztALWfxHFowJZgOXQ2tA-8ra5DdomunOz1UBs2s6ZytPeLxtKmMreF3X1emKtC0qMp4Ycq-gDJsir7pa92d9CtnO9ta1-4OLrgs1kibEq124TSe60b_ADSaa1OAs71HM6hr_zZ6tdW1h3en9TL6fn11P7uNl19uFrPpMi44S3mccrGVuQCAcktYXmrALE8zUUAuN3JDKeRQYolTIEIDzUCmUAi8EZwIkVLGLqOPR9_W2V89-E41lS9CB9pAaEYRmnGCKaP4GahkRGSMioB--A_d296Z8JFACZnhjEgaqOxIFc5672CrWlc12h0UwWpMWe3VGKYaw1RjyupvymoI0venB_pNA-VZ-C_WAHw-An-qGg7PNlar29VYBX181Fe-g-Gs1-6nEpJJrh7ubtTD8u7rt_l6qdbsCa0txLk</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Sawamoto, Mari</creator><creator>Imai, Takafumi</creator><creator>Umeda, Mana</creator><creator>Fukuda, Koji</creator><creator>Kataoka, Takao</creator><creator>Taketani, Shigeru</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>201301</creationdate><title>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</title><author>Sawamoto, Mari ; Imai, Takafumi ; Umeda, Mana ; Fukuda, Koji ; Kataoka, Takao ; Taketani, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5345-456f796eeedf139dae039486ce97b7b22e9ed0704e16ae28e74ec60b651664233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aminolevulinic Acid - metabolism</topic><topic>Aminolevulinic Acid - pharmacology</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Ferrochelatase - genetics</topic><topic>Ferrochelatase - metabolism</topic><topic>Frataxin</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Mice</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Oxidative stress</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Protoporphyrins - biosynthesis</topic><topic>Response Elements</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor Protein p53 - antagonists &amp; inhibitors</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawamoto, Mari</creatorcontrib><creatorcontrib>Imai, Takafumi</creatorcontrib><creatorcontrib>Umeda, Mana</creatorcontrib><creatorcontrib>Fukuda, Koji</creatorcontrib><creatorcontrib>Kataoka, Takao</creatorcontrib><creatorcontrib>Taketani, Shigeru</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawamoto, Mari</au><au>Imai, Takafumi</au><au>Umeda, Mana</au><au>Fukuda, Koji</au><au>Kataoka, Takao</au><au>Taketani, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2013-01</date><risdate>2013</risdate><volume>89</volume><issue>1</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Mitochondrial frataxin is involved in various functions such as iron homeostasis, iron–sulfur cluster biogenesis, the protection from oxidative stress and apoptosis and acts as a tumor suppressor protein. We now show that the expression of frataxin is stimulated in a p53‐dependent manner and prove that frataxin is a direct p53 target gene by showing that the p53‐responsive element in the promoter of the mouse frataxin gene is bound by p53. The bacterial expression of human frataxin stimulated maturation of human ferrochelatase, which catalyzes the insertion of iron into protoporphyrin at the last step of heme biosynthesis. Overexpression of frataxin in human cancer A431 and HeLa cells lowered 5‐aminolevulinic acid(ALA)‐induced accumulation of protoporphyrin and induced resistance to ALA‐induced photo‐damage, whereas p53 silencing with siRNA in non tumor HEK293T cells down‐regulated the expression of frataxin and increased the accumulation of protoporphyrin. Thus, the decrease of the expression of frataxin unregulated by p53 in tumor cells enhances ALA‐induced photo‐damage, by down‐regulation of mitochondrial functions. The expression of frataxin is dependent on the function of the tumor suppressor protein p53 at the transcriptional level. The knockdown of p53 by siRNA in HEK293T cells caused the decrease of the expression of frataxin, leading to enhancement of the ALA‐induced accumulation of protoporphyrin. In contrast, overexpression of frataxin in human cancerous cells lowered the accumulation of protoporphyrin by up‐regulation of mitochondrial functions and induced resistance to ALA‐induced photo‐damage, suggesting that dysfunction of p53 in tumor cells leads to the increase in the ALA‐induced accumulation of protoporphyrin through the decrease of the expression of frataxin.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>22862424</pmid><doi>10.1111/j.1751-1097.2012.01215.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2013-01, Vol.89 (1), p.163-172
issn 0031-8655
1751-1097
language eng
recordid cdi_proquest_miscellaneous_1285102320
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aminolevulinic Acid - metabolism
Aminolevulinic Acid - pharmacology
Animals
Apoptosis
Biosynthesis
Cancer
Cell Line, Tumor
Ferrochelatase - genetics
Ferrochelatase - metabolism
Frataxin
Gene Expression Regulation, Neoplastic
Homeostasis
Humans
Iron - metabolism
Iron-Binding Proteins - genetics
Iron-Binding Proteins - metabolism
Mice
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - radiation effects
Oxidative stress
Promoter Regions, Genetic
Protein Binding
Proteins
Protoporphyrins - biosynthesis
Response Elements
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Rodents
Signal Transduction
Tumor Suppressor Protein p53 - antagonists & inhibitors
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
title The p53-Dependent Expression of Frataxin Controls 5-Aminolevulinic Acid-Induced Accumulation of Protoporphyrin IX and Photo-Damage in Cancerous Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20p53-Dependent%20Expression%20of%20Frataxin%20Controls%205-Aminolevulinic%20Acid-Induced%20Accumulation%20of%20Protoporphyrin%20IX%20and%20Photo-Damage%20in%20Cancerous%20Cells&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Sawamoto,%20Mari&rft.date=2013-01&rft.volume=89&rft.issue=1&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/j.1751-1097.2012.01215.x&rft_dat=%3Cproquest_cross%3E1273168326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267808172&rft_id=info:pmid/22862424&rfr_iscdi=true