Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1

GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2013-01, Vol.77 (1), p.70-82
Hauptverfasser: van den Berghe, Veronique, Stappers, Elke, Vandesande, Bram, Dimidschstein, Jordane, Kroes, Roel, Francis, Annick, Conidi, Andrea, Lesage, Flore, Dries, Ruben, Cazzola, Silvia, Berx, Geert, Kessaris, Nicoletta, Vanderhaeghen, Pierre, van IJcken, Wilfred, Grosveld, Frank G., Goossens, Steven, Haigh, Jody J., Fishell, Gord, Goffinet, André, Aerts, Stein, Huylebroeck, Danny, Seuntjens, Eve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 70
container_title Neuron (Cambridge, Mass.)
container_volume 77
creator van den Berghe, Veronique
Stappers, Elke
Vandesande, Bram
Dimidschstein, Jordane
Kroes, Roel
Francis, Annick
Conidi, Andrea
Lesage, Flore
Dries, Ruben
Cazzola, Silvia
Berx, Geert
Kessaris, Nicoletta
Vanderhaeghen, Pierre
van IJcken, Wilfred
Grosveld, Frank G.
Goossens, Steven
Haigh, Jody J.
Fishell, Gord
Goffinet, André
Aerts, Stein
Huylebroeck, Danny
Seuntjens, Eve
description GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance. ► Sip1 is crucial for directed cortical interneuron migration ► RNA sequencing identifies Sip1-dependent differentiation and guidance factors ► Sip1 is essential to constrain the expression level of Unc5b in the MGE ► Tuning of Unc5b expression level regulates the direction of interneuron migration Van den Berghe et al. demonstrate that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, controls their differentiation and directed migration. Through regulating Unc5b expression, Sip1 contributes to efficient guided migration during brain development in the embryo.
doi_str_mv 10.1016/j.neuron.2012.11.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285100817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312010008</els_id><sourcerecordid>1273498936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-96b4b9b7c72600a47cf45d3acd1496197cc121462d76b8a14597b82c546a3f2c3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxa0KRJfCN6iqSFy4JHhsx44vlVZb_lQq4tBy4GQ5zoR6tWtv7QSJb4-XtBw4IE5z-b2ZN-8Rcg60AQry3bYJOKcYGkaBNQANpfqErIBqVQvQ-hlZ0U7LWjLFT8nLnLeUgmg1vCCnjHNgLagV-XblE7oJh-qz_57s5GOo4lhtYpq8s7vqOkyYlkO5usIDhiFXhZnusdrgblev5ymGuI9zrtbuSX7rD_CKPB_tLuPrx3lGvn54f7f5VN98-Xi9Wd_UruXtVGvZi173yikmKbVCuVG0A7duAKElaOUcMBCSDUr2nT1-oPqOuVZIy0fm-Bl5u-w9pPgwY57M3mdXrNmAxZUB1rVAaQfqP1DFhe40lwV98xe6jXMK5REDUhTnJT5WKLFQLsWcE47mkPzepp8GqDm2ZLZmCc8cWzIAprRUZBePy-d-j8Mf0VMtBbhcACzB_fCYTHYeg8Phd1tmiP7fF34BOaui7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645352512</pqid></control><display><type>article</type><title>Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van den Berghe, Veronique ; Stappers, Elke ; Vandesande, Bram ; Dimidschstein, Jordane ; Kroes, Roel ; Francis, Annick ; Conidi, Andrea ; Lesage, Flore ; Dries, Ruben ; Cazzola, Silvia ; Berx, Geert ; Kessaris, Nicoletta ; Vanderhaeghen, Pierre ; van IJcken, Wilfred ; Grosveld, Frank G. ; Goossens, Steven ; Haigh, Jody J. ; Fishell, Gord ; Goffinet, André ; Aerts, Stein ; Huylebroeck, Danny ; Seuntjens, Eve</creator><creatorcontrib>van den Berghe, Veronique ; Stappers, Elke ; Vandesande, Bram ; Dimidschstein, Jordane ; Kroes, Roel ; Francis, Annick ; Conidi, Andrea ; Lesage, Flore ; Dries, Ruben ; Cazzola, Silvia ; Berx, Geert ; Kessaris, Nicoletta ; Vanderhaeghen, Pierre ; van IJcken, Wilfred ; Grosveld, Frank G. ; Goossens, Steven ; Haigh, Jody J. ; Fishell, Gord ; Goffinet, André ; Aerts, Stein ; Huylebroeck, Danny ; Seuntjens, Eve</creatorcontrib><description>GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance. ► Sip1 is crucial for directed cortical interneuron migration ► RNA sequencing identifies Sip1-dependent differentiation and guidance factors ► Sip1 is essential to constrain the expression level of Unc5b in the MGE ► Tuning of Unc5b expression level regulates the direction of interneuron migration Van den Berghe et al. demonstrate that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, controls their differentiation and directed migration. Through regulating Unc5b expression, Sip1 contributes to efficient guided migration during brain development in the embryo.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.11.009</identifier><identifier>PMID: 23312517</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain slice preparation ; Cell Movement - physiology ; Cerebral Cortex - cytology ; Cerebral Cortex - growth &amp; development ; Gene Knockout Techniques ; Interneurons - physiology ; Mice ; Mice, Transgenic ; Migration ; Neocortex - cytology ; Neocortex - growth &amp; development ; Nerve Tissue Proteins - deficiency ; Nerve Tissue Proteins - genetics ; Netrin Receptors ; Neurons ; Organ Culture Techniques ; Receptors, Cell Surface - deficiency ; Receptors, Cell Surface - genetics ; Rodents ; Telencephalon - cytology ; Telencephalon - growth &amp; development ; Transcription factors</subject><ispartof>Neuron (Cambridge, Mass.), 2013-01, Vol.77 (1), p.70-82</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 9, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-96b4b9b7c72600a47cf45d3acd1496197cc121462d76b8a14597b82c546a3f2c3</citedby><cites>FETCH-LOGICAL-c535t-96b4b9b7c72600a47cf45d3acd1496197cc121462d76b8a14597b82c546a3f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627312010008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23312517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Berghe, Veronique</creatorcontrib><creatorcontrib>Stappers, Elke</creatorcontrib><creatorcontrib>Vandesande, Bram</creatorcontrib><creatorcontrib>Dimidschstein, Jordane</creatorcontrib><creatorcontrib>Kroes, Roel</creatorcontrib><creatorcontrib>Francis, Annick</creatorcontrib><creatorcontrib>Conidi, Andrea</creatorcontrib><creatorcontrib>Lesage, Flore</creatorcontrib><creatorcontrib>Dries, Ruben</creatorcontrib><creatorcontrib>Cazzola, Silvia</creatorcontrib><creatorcontrib>Berx, Geert</creatorcontrib><creatorcontrib>Kessaris, Nicoletta</creatorcontrib><creatorcontrib>Vanderhaeghen, Pierre</creatorcontrib><creatorcontrib>van IJcken, Wilfred</creatorcontrib><creatorcontrib>Grosveld, Frank G.</creatorcontrib><creatorcontrib>Goossens, Steven</creatorcontrib><creatorcontrib>Haigh, Jody J.</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Goffinet, André</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><creatorcontrib>Huylebroeck, Danny</creatorcontrib><creatorcontrib>Seuntjens, Eve</creatorcontrib><title>Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance. ► Sip1 is crucial for directed cortical interneuron migration ► RNA sequencing identifies Sip1-dependent differentiation and guidance factors ► Sip1 is essential to constrain the expression level of Unc5b in the MGE ► Tuning of Unc5b expression level regulates the direction of interneuron migration Van den Berghe et al. demonstrate that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, controls their differentiation and directed migration. Through regulating Unc5b expression, Sip1 contributes to efficient guided migration during brain development in the embryo.</description><subject>Animals</subject><subject>Brain slice preparation</subject><subject>Cell Movement - physiology</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Gene Knockout Techniques</subject><subject>Interneurons - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Migration</subject><subject>Neocortex - cytology</subject><subject>Neocortex - growth &amp; development</subject><subject>Nerve Tissue Proteins - deficiency</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Netrin Receptors</subject><subject>Neurons</subject><subject>Organ Culture Techniques</subject><subject>Receptors, Cell Surface - deficiency</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Rodents</subject><subject>Telencephalon - cytology</subject><subject>Telencephalon - growth &amp; development</subject><subject>Transcription factors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxa0KRJfCN6iqSFy4JHhsx44vlVZb_lQq4tBy4GQ5zoR6tWtv7QSJb4-XtBw4IE5z-b2ZN-8Rcg60AQry3bYJOKcYGkaBNQANpfqErIBqVQvQ-hlZ0U7LWjLFT8nLnLeUgmg1vCCnjHNgLagV-XblE7oJh-qz_57s5GOo4lhtYpq8s7vqOkyYlkO5usIDhiFXhZnusdrgblev5ymGuI9zrtbuSX7rD_CKPB_tLuPrx3lGvn54f7f5VN98-Xi9Wd_UruXtVGvZi173yikmKbVCuVG0A7duAKElaOUcMBCSDUr2nT1-oPqOuVZIy0fm-Bl5u-w9pPgwY57M3mdXrNmAxZUB1rVAaQfqP1DFhe40lwV98xe6jXMK5REDUhTnJT5WKLFQLsWcE47mkPzepp8GqDm2ZLZmCc8cWzIAprRUZBePy-d-j8Mf0VMtBbhcACzB_fCYTHYeg8Phd1tmiP7fF34BOaui7g</recordid><startdate>20130109</startdate><enddate>20130109</enddate><creator>van den Berghe, Veronique</creator><creator>Stappers, Elke</creator><creator>Vandesande, Bram</creator><creator>Dimidschstein, Jordane</creator><creator>Kroes, Roel</creator><creator>Francis, Annick</creator><creator>Conidi, Andrea</creator><creator>Lesage, Flore</creator><creator>Dries, Ruben</creator><creator>Cazzola, Silvia</creator><creator>Berx, Geert</creator><creator>Kessaris, Nicoletta</creator><creator>Vanderhaeghen, Pierre</creator><creator>van IJcken, Wilfred</creator><creator>Grosveld, Frank G.</creator><creator>Goossens, Steven</creator><creator>Haigh, Jody J.</creator><creator>Fishell, Gord</creator><creator>Goffinet, André</creator><creator>Aerts, Stein</creator><creator>Huylebroeck, Danny</creator><creator>Seuntjens, Eve</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130109</creationdate><title>Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1</title><author>van den Berghe, Veronique ; Stappers, Elke ; Vandesande, Bram ; Dimidschstein, Jordane ; Kroes, Roel ; Francis, Annick ; Conidi, Andrea ; Lesage, Flore ; Dries, Ruben ; Cazzola, Silvia ; Berx, Geert ; Kessaris, Nicoletta ; Vanderhaeghen, Pierre ; van IJcken, Wilfred ; Grosveld, Frank G. ; Goossens, Steven ; Haigh, Jody J. ; Fishell, Gord ; Goffinet, André ; Aerts, Stein ; Huylebroeck, Danny ; Seuntjens, Eve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-96b4b9b7c72600a47cf45d3acd1496197cc121462d76b8a14597b82c546a3f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Brain slice preparation</topic><topic>Cell Movement - physiology</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Gene Knockout Techniques</topic><topic>Interneurons - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Migration</topic><topic>Neocortex - cytology</topic><topic>Neocortex - growth &amp; development</topic><topic>Nerve Tissue Proteins - deficiency</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Netrin Receptors</topic><topic>Neurons</topic><topic>Organ Culture Techniques</topic><topic>Receptors, Cell Surface - deficiency</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Rodents</topic><topic>Telencephalon - cytology</topic><topic>Telencephalon - growth &amp; development</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Berghe, Veronique</creatorcontrib><creatorcontrib>Stappers, Elke</creatorcontrib><creatorcontrib>Vandesande, Bram</creatorcontrib><creatorcontrib>Dimidschstein, Jordane</creatorcontrib><creatorcontrib>Kroes, Roel</creatorcontrib><creatorcontrib>Francis, Annick</creatorcontrib><creatorcontrib>Conidi, Andrea</creatorcontrib><creatorcontrib>Lesage, Flore</creatorcontrib><creatorcontrib>Dries, Ruben</creatorcontrib><creatorcontrib>Cazzola, Silvia</creatorcontrib><creatorcontrib>Berx, Geert</creatorcontrib><creatorcontrib>Kessaris, Nicoletta</creatorcontrib><creatorcontrib>Vanderhaeghen, Pierre</creatorcontrib><creatorcontrib>van IJcken, Wilfred</creatorcontrib><creatorcontrib>Grosveld, Frank G.</creatorcontrib><creatorcontrib>Goossens, Steven</creatorcontrib><creatorcontrib>Haigh, Jody J.</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Goffinet, André</creatorcontrib><creatorcontrib>Aerts, Stein</creatorcontrib><creatorcontrib>Huylebroeck, Danny</creatorcontrib><creatorcontrib>Seuntjens, Eve</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Berghe, Veronique</au><au>Stappers, Elke</au><au>Vandesande, Bram</au><au>Dimidschstein, Jordane</au><au>Kroes, Roel</au><au>Francis, Annick</au><au>Conidi, Andrea</au><au>Lesage, Flore</au><au>Dries, Ruben</au><au>Cazzola, Silvia</au><au>Berx, Geert</au><au>Kessaris, Nicoletta</au><au>Vanderhaeghen, Pierre</au><au>van IJcken, Wilfred</au><au>Grosveld, Frank G.</au><au>Goossens, Steven</au><au>Haigh, Jody J.</au><au>Fishell, Gord</au><au>Goffinet, André</au><au>Aerts, Stein</au><au>Huylebroeck, Danny</au><au>Seuntjens, Eve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-01-09</date><risdate>2013</risdate><volume>77</volume><issue>1</issue><spage>70</spage><epage>82</epage><pages>70-82</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance. ► Sip1 is crucial for directed cortical interneuron migration ► RNA sequencing identifies Sip1-dependent differentiation and guidance factors ► Sip1 is essential to constrain the expression level of Unc5b in the MGE ► Tuning of Unc5b expression level regulates the direction of interneuron migration Van den Berghe et al. demonstrate that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, controls their differentiation and directed migration. Through regulating Unc5b expression, Sip1 contributes to efficient guided migration during brain development in the embryo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23312517</pmid><doi>10.1016/j.neuron.2012.11.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2013-01, Vol.77 (1), p.70-82
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1285100817
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Brain slice preparation
Cell Movement - physiology
Cerebral Cortex - cytology
Cerebral Cortex - growth & development
Gene Knockout Techniques
Interneurons - physiology
Mice
Mice, Transgenic
Migration
Neocortex - cytology
Neocortex - growth & development
Nerve Tissue Proteins - deficiency
Nerve Tissue Proteins - genetics
Netrin Receptors
Neurons
Organ Culture Techniques
Receptors, Cell Surface - deficiency
Receptors, Cell Surface - genetics
Rodents
Telencephalon - cytology
Telencephalon - growth & development
Transcription factors
title Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20Migration%20of%20Cortical%20Interneurons%20Depends%20on%20the%20Cell-Autonomous%20Action%20of%20Sip1&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=van%C2%A0den%C2%A0Berghe,%20Veronique&rft.date=2013-01-09&rft.volume=77&rft.issue=1&rft.spage=70&rft.epage=82&rft.pages=70-82&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.11.009&rft_dat=%3Cproquest_cross%3E1273498936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645352512&rft_id=info:pmid/23312517&rft_els_id=S0896627312010008&rfr_iscdi=true