From cells to chromatin: Capturing snapshots of genome organization with 5C technology

In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2012-11, Vol.58 (3), p.255-267
Hauptverfasser: Ferraiuolo, Maria A., Sanyal, Amartya, Naumova, Natalia, Dekker, Job, Dostie, Josée
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 3
container_start_page 255
container_title Methods (San Diego, Calif.)
container_volume 58
creator Ferraiuolo, Maria A.
Sanyal, Amartya
Naumova, Natalia
Dekker, Job
Dostie, Josée
description In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.
doi_str_mv 10.1016/j.ymeth.2012.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285091447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202312002769</els_id><sourcerecordid>1285091447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</originalsourceid><addsrcrecordid>eNqNkMFq3DAQhkVJaNK0T1AoOubirTRaW3Yhh7A0bSGQS9qrkOXRWsta2kjahO3TV-4mPZacZjR8o-H_CPnI2YIz3nzeLA4T5nEBjEOZLBjnb8g5Z11ddVywk7lfNhUwEGfkXUobxgop27fkDAQXsgM4J79uYpiowe020RyoGctTZ-e_0JXe5X10fk2T17s0hpxosHSNPkxIQ1xr734XNHj65PJI6xXNaEYftmF9eE9Ord4m_PBcL8jPm6_3q-_V7d23H6vr28oshcyVbfnQ6EbaxtpeQCtbkNZ2Q6ltiWV60KLuNdMGbV_3lgGAlD3vSxQE2YkLcnn8dxfDwx5TVpNLcxrtMeyT4tDWrOPLpXwFCryt21pCQcURNTGkFNGqXXSTjgfFmZrdq436617N7udhcV-2Pj0f2PcTDv92XmQX4OoIYDHy6DCqZBx6g4OLaLIagvvvgT-F-JYm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221858572</pqid></control><display><type>article</type><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</creator><creatorcontrib>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</creatorcontrib><description>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2012.10.011</identifier><identifier>PMID: 23137922</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence ; Chromatin ; Chromatin - genetics ; Chromosome Mapping - methods ; Chromosomes ; Conformation ; Cross-Linking Reagents - chemistry ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - isolation &amp; purification ; DNA Primers - genetics ; Epigenetics ; Formaldehyde - chemistry ; Gene Library ; Gene mapping ; Genome architecture ; Genome, Human ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Polymerase Chain Reaction ; Sequence Analysis, DNA ; Structure ; Tissue Fixation ; Titrimetry ; Transcription</subject><ispartof>Methods (San Diego, Calif.), 2012-11, Vol.58 (3), p.255-267</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</citedby><cites>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2012.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23137922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferraiuolo, Maria A.</creatorcontrib><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Naumova, Natalia</creatorcontrib><creatorcontrib>Dekker, Job</creatorcontrib><creatorcontrib>Dostie, Josée</creatorcontrib><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes</subject><subject>Conformation</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - isolation &amp; purification</subject><subject>DNA Primers - genetics</subject><subject>Epigenetics</subject><subject>Formaldehyde - chemistry</subject><subject>Gene Library</subject><subject>Gene mapping</subject><subject>Genome architecture</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Structure</subject><subject>Tissue Fixation</subject><subject>Titrimetry</subject><subject>Transcription</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFq3DAQhkVJaNK0T1AoOubirTRaW3Yhh7A0bSGQS9qrkOXRWsta2kjahO3TV-4mPZacZjR8o-H_CPnI2YIz3nzeLA4T5nEBjEOZLBjnb8g5Z11ddVywk7lfNhUwEGfkXUobxgop27fkDAQXsgM4J79uYpiowe020RyoGctTZ-e_0JXe5X10fk2T17s0hpxosHSNPkxIQ1xr734XNHj65PJI6xXNaEYftmF9eE9Ord4m_PBcL8jPm6_3q-_V7d23H6vr28oshcyVbfnQ6EbaxtpeQCtbkNZ2Q6ltiWV60KLuNdMGbV_3lgGAlD3vSxQE2YkLcnn8dxfDwx5TVpNLcxrtMeyT4tDWrOPLpXwFCryt21pCQcURNTGkFNGqXXSTjgfFmZrdq436617N7udhcV-2Pj0f2PcTDv92XmQX4OoIYDHy6DCqZBx6g4OLaLIagvvvgT-F-JYm</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Ferraiuolo, Maria A.</creator><creator>Sanyal, Amartya</creator><creator>Naumova, Natalia</creator><creator>Dekker, Job</creator><creator>Dostie, Josée</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201211</creationdate><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><author>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes</topic><topic>Conformation</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - isolation &amp; purification</topic><topic>DNA Primers - genetics</topic><topic>Epigenetics</topic><topic>Formaldehyde - chemistry</topic><topic>Gene Library</topic><topic>Gene mapping</topic><topic>Genome architecture</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Structure</topic><topic>Tissue Fixation</topic><topic>Titrimetry</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraiuolo, Maria A.</creatorcontrib><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Naumova, Natalia</creatorcontrib><creatorcontrib>Dekker, Job</creatorcontrib><creatorcontrib>Dostie, Josée</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraiuolo, Maria A.</au><au>Sanyal, Amartya</au><au>Naumova, Natalia</au><au>Dekker, Job</au><au>Dostie, Josée</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2012-11</date><risdate>2012</risdate><volume>58</volume><issue>3</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23137922</pmid><doi>10.1016/j.ymeth.2012.10.011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2012-11, Vol.58 (3), p.255-267
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_1285091447
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Base Sequence
Chromatin
Chromatin - genetics
Chromosome Mapping - methods
Chromosomes
Conformation
Cross-Linking Reagents - chemistry
DNA
DNA - chemistry
DNA - genetics
DNA - isolation & purification
DNA Primers - genetics
Epigenetics
Formaldehyde - chemistry
Gene Library
Gene mapping
Genome architecture
Genome, Human
Genomes
High-Throughput Nucleotide Sequencing
Humans
Polymerase Chain Reaction
Sequence Analysis, DNA
Structure
Tissue Fixation
Titrimetry
Transcription
title From cells to chromatin: Capturing snapshots of genome organization with 5C technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20cells%20to%20chromatin:%20Capturing%20snapshots%20of%20genome%20organization%20with%205C%20technology&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Ferraiuolo,%20Maria%20A.&rft.date=2012-11&rft.volume=58&rft.issue=3&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2012.10.011&rft_dat=%3Cproquest_cross%3E1285091447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221858572&rft_id=info:pmid/23137922&rft_els_id=S1046202312002769&rfr_iscdi=true