From cells to chromatin: Capturing snapshots of genome organization with 5C technology
In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible b...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2012-11, Vol.58 (3), p.255-267 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 3 |
container_start_page | 255 |
container_title | Methods (San Diego, Calif.) |
container_volume | 58 |
creator | Ferraiuolo, Maria A. Sanyal, Amartya Naumova, Natalia Dekker, Job Dostie, Josée |
description | In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes. |
doi_str_mv | 10.1016/j.ymeth.2012.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285091447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202312002769</els_id><sourcerecordid>1285091447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</originalsourceid><addsrcrecordid>eNqNkMFq3DAQhkVJaNK0T1AoOubirTRaW3Yhh7A0bSGQS9qrkOXRWsta2kjahO3TV-4mPZacZjR8o-H_CPnI2YIz3nzeLA4T5nEBjEOZLBjnb8g5Z11ddVywk7lfNhUwEGfkXUobxgop27fkDAQXsgM4J79uYpiowe020RyoGctTZ-e_0JXe5X10fk2T17s0hpxosHSNPkxIQ1xr734XNHj65PJI6xXNaEYftmF9eE9Ord4m_PBcL8jPm6_3q-_V7d23H6vr28oshcyVbfnQ6EbaxtpeQCtbkNZ2Q6ltiWV60KLuNdMGbV_3lgGAlD3vSxQE2YkLcnn8dxfDwx5TVpNLcxrtMeyT4tDWrOPLpXwFCryt21pCQcURNTGkFNGqXXSTjgfFmZrdq436617N7udhcV-2Pj0f2PcTDv92XmQX4OoIYDHy6DCqZBx6g4OLaLIagvvvgT-F-JYm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221858572</pqid></control><display><type>article</type><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</creator><creatorcontrib>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</creatorcontrib><description>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2012.10.011</identifier><identifier>PMID: 23137922</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence ; Chromatin ; Chromatin - genetics ; Chromosome Mapping - methods ; Chromosomes ; Conformation ; Cross-Linking Reagents - chemistry ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - isolation & purification ; DNA Primers - genetics ; Epigenetics ; Formaldehyde - chemistry ; Gene Library ; Gene mapping ; Genome architecture ; Genome, Human ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Polymerase Chain Reaction ; Sequence Analysis, DNA ; Structure ; Tissue Fixation ; Titrimetry ; Transcription</subject><ispartof>Methods (San Diego, Calif.), 2012-11, Vol.58 (3), p.255-267</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</citedby><cites>FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2012.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23137922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferraiuolo, Maria A.</creatorcontrib><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Naumova, Natalia</creatorcontrib><creatorcontrib>Dekker, Job</creatorcontrib><creatorcontrib>Dostie, Josée</creatorcontrib><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes</subject><subject>Conformation</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - isolation & purification</subject><subject>DNA Primers - genetics</subject><subject>Epigenetics</subject><subject>Formaldehyde - chemistry</subject><subject>Gene Library</subject><subject>Gene mapping</subject><subject>Genome architecture</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Structure</subject><subject>Tissue Fixation</subject><subject>Titrimetry</subject><subject>Transcription</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMFq3DAQhkVJaNK0T1AoOubirTRaW3Yhh7A0bSGQS9qrkOXRWsta2kjahO3TV-4mPZacZjR8o-H_CPnI2YIz3nzeLA4T5nEBjEOZLBjnb8g5Z11ddVywk7lfNhUwEGfkXUobxgop27fkDAQXsgM4J79uYpiowe020RyoGctTZ-e_0JXe5X10fk2T17s0hpxosHSNPkxIQ1xr734XNHj65PJI6xXNaEYftmF9eE9Ord4m_PBcL8jPm6_3q-_V7d23H6vr28oshcyVbfnQ6EbaxtpeQCtbkNZ2Q6ltiWV60KLuNdMGbV_3lgGAlD3vSxQE2YkLcnn8dxfDwx5TVpNLcxrtMeyT4tDWrOPLpXwFCryt21pCQcURNTGkFNGqXXSTjgfFmZrdq436617N7udhcV-2Pj0f2PcTDv92XmQX4OoIYDHy6DCqZBx6g4OLaLIagvvvgT-F-JYm</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Ferraiuolo, Maria A.</creator><creator>Sanyal, Amartya</creator><creator>Naumova, Natalia</creator><creator>Dekker, Job</creator><creator>Dostie, Josée</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201211</creationdate><title>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</title><author>Ferraiuolo, Maria A. ; Sanyal, Amartya ; Naumova, Natalia ; Dekker, Job ; Dostie, Josée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f81d6a67f6ffb3287827ff9d7828201cb2a35ba0acefb5bf022277b1b000e2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes</topic><topic>Conformation</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - isolation & purification</topic><topic>DNA Primers - genetics</topic><topic>Epigenetics</topic><topic>Formaldehyde - chemistry</topic><topic>Gene Library</topic><topic>Gene mapping</topic><topic>Genome architecture</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Structure</topic><topic>Tissue Fixation</topic><topic>Titrimetry</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraiuolo, Maria A.</creatorcontrib><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Naumova, Natalia</creatorcontrib><creatorcontrib>Dekker, Job</creatorcontrib><creatorcontrib>Dostie, Josée</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraiuolo, Maria A.</au><au>Sanyal, Amartya</au><au>Naumova, Natalia</au><au>Dekker, Job</au><au>Dostie, Josée</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From cells to chromatin: Capturing snapshots of genome organization with 5C technology</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2012-11</date><risdate>2012</risdate><volume>58</volume><issue>3</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>In eukaryotes, genome organization can be observed on many levels and at different scales. This organization is important not only to reduce chromosome length but also for the proper execution of various biological processes. High-resolution mapping of spatial chromatin structure was made possible by the development of the chromosome conformation capture (3C) technique. 3C uses chemical cross-linking followed by proximity-based ligation of fragmented DNA to capture frequently interacting chromatin segments in cell populations. Several 3C-related methods capable of higher chromosome conformation mapping throughput were reported afterwards. These techniques include the 3C-carbon copy (5C) approach, which offers the advantage of being highly quantitative and reproducible. We provide here an updated reference protocol for the production of 5C libraries analyzed by next-generation sequencing or onto microarrays. A procedure used to verify that 3C library templates bear the high quality required to produce superior 5C libraries is also described. We believe that this detailed protocol will help guide researchers in probing spatial genome organization and its role in various biological processes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23137922</pmid><doi>10.1016/j.ymeth.2012.10.011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2012-11, Vol.58 (3), p.255-267 |
issn | 1046-2023 1095-9130 |
language | eng |
recordid | cdi_proquest_miscellaneous_1285091447 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Base Sequence Chromatin Chromatin - genetics Chromosome Mapping - methods Chromosomes Conformation Cross-Linking Reagents - chemistry DNA DNA - chemistry DNA - genetics DNA - isolation & purification DNA Primers - genetics Epigenetics Formaldehyde - chemistry Gene Library Gene mapping Genome architecture Genome, Human Genomes High-Throughput Nucleotide Sequencing Humans Polymerase Chain Reaction Sequence Analysis, DNA Structure Tissue Fixation Titrimetry Transcription |
title | From cells to chromatin: Capturing snapshots of genome organization with 5C technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20cells%20to%20chromatin:%20Capturing%20snapshots%20of%20genome%20organization%20with%205C%20technology&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Ferraiuolo,%20Maria%20A.&rft.date=2012-11&rft.volume=58&rft.issue=3&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2012.10.011&rft_dat=%3Cproquest_cross%3E1285091447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221858572&rft_id=info:pmid/23137922&rft_els_id=S1046202312002769&rfr_iscdi=true |