Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes
Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in t...
Gespeichert in:
Veröffentlicht in: | Acta Physiologica 2013-03, Vol.207 (3), p.447-459 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 3 |
container_start_page | 447 |
container_title | Acta Physiologica |
container_volume | 207 |
creator | Torres-Jacome, J. Gallego, M. Rodríguez-Robledo, J. M. Sanchez-Chapula, J. A. Casis, O. |
description | Aims
The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1.
Methods
We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence.
Results
Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery.
Conclusion
Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions. |
doi_str_mv | 10.1111/apha.12043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285085900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883740571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</originalsourceid><addsrcrecordid>eNp9kTtvFDEURi0EIlFIww9AlmgQ0gRfv2amXCLygChQgEJneTx3tA7zwvaQ7L-Pl022oMCNXZzvyPd-hLwGdgL5fLDz2p4AZ1I8I4dQyqqAEvTz_ZtVB-Q4xlvGGHAQkvOX5IALqEBqdUj85TCH6Q8OOCY6dTStkQ6YbDP13tGYbFoiDegyEiJ1NrTeOjpPycbol4G6tR1H7GncjDkafaR-pHg_Y_Bbpe1pDjSYML4iLzrbRzx-vI_Ij7NP308viquv55enq6vCSQ2iqGWnWallrWTrOIKSHWt1AwoRWM1RC-UqVtuWO-ASpAOoLK9qLnVjsURxRN7tvHmu3wvGZAYfHfa9HXFaogFeKVapmrGMvv0HvZ2WMObfbam8KqGUyNT7HeXCFGPAzsx5OBs2BpjZdmC2HZi_HWT4zaNyaQZs9-jTxjMAO-DO97j5j8qsvl2snqTFLuNjwvt9xoZfRpeiVObm-tx8PvtY1l-uf5ob8QCW7KBC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284223553</pqid></control><display><type>article</type><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</creator><creatorcontrib>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</creatorcontrib><description>Aims
The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1.
Methods
We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence.
Results
Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery.
Conclusion
Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.12043</identifier><identifier>PMID: 23181465</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Action Potentials ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Animals ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Cells ; Diabetes Mellitus, Experimental - drug therapy ; Diabetes Mellitus, Experimental - metabolism ; Energy Metabolism - drug effects ; Enzyme Activation ; Fluorescent Antibody Technique ; heart ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - pharmacology ; metabolism ; Mice ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Patch-Clamp Techniques ; Potassium - metabolism ; Potassium Channels - biosynthesis ; Potassium Channels - drug effects ; Protein synthesis ; Proteins ; pyruvate ; Pyruvic Acid - metabolism ; Rabbits ; repolarization ; Rodents ; Time Factors</subject><ispartof>Acta Physiologica, 2013-03, Vol.207 (3), p.447-459</ispartof><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society</rights><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.</rights><rights>Copyright © 2013 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</citedby><cites>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.12043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.12043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23181465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres-Jacome, J.</creatorcontrib><creatorcontrib>Gallego, M.</creatorcontrib><creatorcontrib>Rodríguez-Robledo, J. M.</creatorcontrib><creatorcontrib>Sanchez-Chapula, J. A.</creatorcontrib><creatorcontrib>Casis, O.</creatorcontrib><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Aims
The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1.
Methods
We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence.
Results
Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery.
Conclusion
Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</description><subject>Action Potentials</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Animals</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Cells</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Enzyme Activation</subject><subject>Fluorescent Antibody Technique</subject><subject>heart</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - pharmacology</subject><subject>metabolism</subject><subject>Mice</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - biosynthesis</subject><subject>Potassium Channels - drug effects</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>pyruvate</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rabbits</subject><subject>repolarization</subject><subject>Rodents</subject><subject>Time Factors</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtvFDEURi0EIlFIww9AlmgQ0gRfv2amXCLygChQgEJneTx3tA7zwvaQ7L-Pl022oMCNXZzvyPd-hLwGdgL5fLDz2p4AZ1I8I4dQyqqAEvTz_ZtVB-Q4xlvGGHAQkvOX5IALqEBqdUj85TCH6Q8OOCY6dTStkQ6YbDP13tGYbFoiDegyEiJ1NrTeOjpPycbol4G6tR1H7GncjDkafaR-pHg_Y_Bbpe1pDjSYML4iLzrbRzx-vI_Ij7NP308viquv55enq6vCSQ2iqGWnWallrWTrOIKSHWt1AwoRWM1RC-UqVtuWO-ASpAOoLK9qLnVjsURxRN7tvHmu3wvGZAYfHfa9HXFaogFeKVapmrGMvv0HvZ2WMObfbam8KqGUyNT7HeXCFGPAzsx5OBs2BpjZdmC2HZi_HWT4zaNyaQZs9-jTxjMAO-DO97j5j8qsvl2snqTFLuNjwvt9xoZfRpeiVObm-tx8PvtY1l-uf5ob8QCW7KBC</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Torres-Jacome, J.</creator><creator>Gallego, M.</creator><creator>Rodríguez-Robledo, J. M.</creator><creator>Sanchez-Chapula, J. A.</creator><creator>Casis, O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><author>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Animals</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Cells</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Enzyme Activation</topic><topic>Fluorescent Antibody Technique</topic><topic>heart</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - pharmacology</topic><topic>metabolism</topic><topic>Mice</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - biosynthesis</topic><topic>Potassium Channels - drug effects</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>pyruvate</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rabbits</topic><topic>repolarization</topic><topic>Rodents</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-Jacome, J.</creatorcontrib><creatorcontrib>Gallego, M.</creatorcontrib><creatorcontrib>Rodríguez-Robledo, J. M.</creatorcontrib><creatorcontrib>Sanchez-Chapula, J. A.</creatorcontrib><creatorcontrib>Casis, O.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Jacome, J.</au><au>Gallego, M.</au><au>Rodríguez-Robledo, J. M.</au><au>Sanchez-Chapula, J. A.</au><au>Casis, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>207</volume><issue>3</issue><spage>447</spage><epage>459</epage><pages>447-459</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aims
The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1.
Methods
We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence.
Results
Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery.
Conclusion
Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23181465</pmid><doi>10.1111/apha.12043</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2013-03, Vol.207 (3), p.447-459 |
issn | 1748-1708 1748-1716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1285085900 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Action Potentials AMP-Activated Protein Kinases - metabolism AMPK Animals Blood Glucose - drug effects Blood Glucose - metabolism Cells Diabetes Mellitus, Experimental - drug therapy Diabetes Mellitus, Experimental - metabolism Energy Metabolism - drug effects Enzyme Activation Fluorescent Antibody Technique heart Hypoglycemic Agents - pharmacology insulin Insulin - pharmacology metabolism Mice Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Patch-Clamp Techniques Potassium - metabolism Potassium Channels - biosynthesis Potassium Channels - drug effects Protein synthesis Proteins pyruvate Pyruvic Acid - metabolism Rabbits repolarization Rodents Time Factors |
title | Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20metabolic%20status%20recovers%20cardiac%20potassium%20channel%20synthesis%20in%20experimental%20diabetes&rft.jtitle=Acta%20Physiologica&rft.au=Torres-Jacome,%20J.&rft.date=2013-03&rft.volume=207&rft.issue=3&rft.spage=447&rft.epage=459&rft.pages=447-459&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.12043&rft_dat=%3Cproquest_cross%3E2883740571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284223553&rft_id=info:pmid/23181465&rfr_iscdi=true |