Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes

Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2013-03, Vol.207 (3), p.447-459
Hauptverfasser: Torres-Jacome, J., Gallego, M., Rodríguez-Robledo, J. M., Sanchez-Chapula, J. A., Casis, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 3
container_start_page 447
container_title Acta Physiologica
container_volume 207
creator Torres-Jacome, J.
Gallego, M.
Rodríguez-Robledo, J. M.
Sanchez-Chapula, J. A.
Casis, O.
description Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1. Methods We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. Results Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery. Conclusion Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.
doi_str_mv 10.1111/apha.12043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1285085900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883740571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</originalsourceid><addsrcrecordid>eNp9kTtvFDEURi0EIlFIww9AlmgQ0gRfv2amXCLygChQgEJneTx3tA7zwvaQ7L-Pl022oMCNXZzvyPd-hLwGdgL5fLDz2p4AZ1I8I4dQyqqAEvTz_ZtVB-Q4xlvGGHAQkvOX5IALqEBqdUj85TCH6Q8OOCY6dTStkQ6YbDP13tGYbFoiDegyEiJ1NrTeOjpPycbol4G6tR1H7GncjDkafaR-pHg_Y_Bbpe1pDjSYML4iLzrbRzx-vI_Ij7NP308viquv55enq6vCSQ2iqGWnWallrWTrOIKSHWt1AwoRWM1RC-UqVtuWO-ASpAOoLK9qLnVjsURxRN7tvHmu3wvGZAYfHfa9HXFaogFeKVapmrGMvv0HvZ2WMObfbam8KqGUyNT7HeXCFGPAzsx5OBs2BpjZdmC2HZi_HWT4zaNyaQZs9-jTxjMAO-DO97j5j8qsvl2snqTFLuNjwvt9xoZfRpeiVObm-tx8PvtY1l-uf5ob8QCW7KBC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284223553</pqid></control><display><type>article</type><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</creator><creatorcontrib>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</creatorcontrib><description>Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1. Methods We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. Results Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery. Conclusion Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.12043</identifier><identifier>PMID: 23181465</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Action Potentials ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Animals ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Cells ; Diabetes Mellitus, Experimental - drug therapy ; Diabetes Mellitus, Experimental - metabolism ; Energy Metabolism - drug effects ; Enzyme Activation ; Fluorescent Antibody Technique ; heart ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - pharmacology ; metabolism ; Mice ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Patch-Clamp Techniques ; Potassium - metabolism ; Potassium Channels - biosynthesis ; Potassium Channels - drug effects ; Protein synthesis ; Proteins ; pyruvate ; Pyruvic Acid - metabolism ; Rabbits ; repolarization ; Rodents ; Time Factors</subject><ispartof>Acta Physiologica, 2013-03, Vol.207 (3), p.447-459</ispartof><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society</rights><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.</rights><rights>Copyright © 2013 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</citedby><cites>FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.12043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.12043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23181465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres-Jacome, J.</creatorcontrib><creatorcontrib>Gallego, M.</creatorcontrib><creatorcontrib>Rodríguez-Robledo, J. M.</creatorcontrib><creatorcontrib>Sanchez-Chapula, J. A.</creatorcontrib><creatorcontrib>Casis, O.</creatorcontrib><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1. Methods We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. Results Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery. Conclusion Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</description><subject>Action Potentials</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Animals</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Cells</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Enzyme Activation</subject><subject>Fluorescent Antibody Technique</subject><subject>heart</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - pharmacology</subject><subject>metabolism</subject><subject>Mice</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - biosynthesis</subject><subject>Potassium Channels - drug effects</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>pyruvate</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rabbits</subject><subject>repolarization</subject><subject>Rodents</subject><subject>Time Factors</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kTtvFDEURi0EIlFIww9AlmgQ0gRfv2amXCLygChQgEJneTx3tA7zwvaQ7L-Pl022oMCNXZzvyPd-hLwGdgL5fLDz2p4AZ1I8I4dQyqqAEvTz_ZtVB-Q4xlvGGHAQkvOX5IALqEBqdUj85TCH6Q8OOCY6dTStkQ6YbDP13tGYbFoiDegyEiJ1NrTeOjpPycbol4G6tR1H7GncjDkafaR-pHg_Y_Bbpe1pDjSYML4iLzrbRzx-vI_Ij7NP308viquv55enq6vCSQ2iqGWnWallrWTrOIKSHWt1AwoRWM1RC-UqVtuWO-ASpAOoLK9qLnVjsURxRN7tvHmu3wvGZAYfHfa9HXFaogFeKVapmrGMvv0HvZ2WMObfbam8KqGUyNT7HeXCFGPAzsx5OBs2BpjZdmC2HZi_HWT4zaNyaQZs9-jTxjMAO-DO97j5j8qsvl2snqTFLuNjwvt9xoZfRpeiVObm-tx8PvtY1l-uf5ob8QCW7KBC</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Torres-Jacome, J.</creator><creator>Gallego, M.</creator><creator>Rodríguez-Robledo, J. M.</creator><creator>Sanchez-Chapula, J. A.</creator><creator>Casis, O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>201303</creationdate><title>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</title><author>Torres-Jacome, J. ; Gallego, M. ; Rodríguez-Robledo, J. M. ; Sanchez-Chapula, J. A. ; Casis, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4613-94f60764954dc2e154f0d6b15ee1092e635c809ad2c12414c118a289246bae7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Animals</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Cells</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Enzyme Activation</topic><topic>Fluorescent Antibody Technique</topic><topic>heart</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - pharmacology</topic><topic>metabolism</topic><topic>Mice</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - biosynthesis</topic><topic>Potassium Channels - drug effects</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>pyruvate</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rabbits</topic><topic>repolarization</topic><topic>Rodents</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-Jacome, J.</creatorcontrib><creatorcontrib>Gallego, M.</creatorcontrib><creatorcontrib>Rodríguez-Robledo, J. M.</creatorcontrib><creatorcontrib>Sanchez-Chapula, J. A.</creatorcontrib><creatorcontrib>Casis, O.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Jacome, J.</au><au>Gallego, M.</au><au>Rodríguez-Robledo, J. M.</au><au>Sanchez-Chapula, J. A.</au><au>Casis, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>207</volume><issue>3</issue><spage>447</spage><epage>459</epage><pages>447-459</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aims The fast transient outward current, Ito,fast, is the most extensively studied cardiac K+ current in diabetic animals. Two hypotheses have been proposed to explain how type‐1 diabetes reduces this current in cardiac muscle. The first one is a deficiency in channel expression due to a defect in the trophic effect of insulin. The second one proposes flawed glucose metabolism as the cause of the reduced Ito,fast. Moreover, little information exists about the effects and possible mechanisms of diabetes on the other repolarizing currents of the human heart: Ito,slow, IKr, IKs, IKur, IKslow and IK1. Methods We recorded cardiac action potentials and K+ currents in ventricular cells isolated from control and streptozotocin‐ or alloxan‐induced diabetic mice and rabbits. Channel protein expression was determined by immunofluorescence. Results Diabetes reduces the amplitude of Ito,fast, Ito,slow and IKslow, in ventricular myocytes from mouse and rabbit, with no effect on Iss, IKr or IK1. The absence of changes in the biophysical properties of the currents and the immunofluorescence experiments confirmed the reduction in channel protein synthesis. Six‐hour incubation of myocytes with insulin or pyruvate recovered current amplitudes and fluorescent staining. The activation of AMP‐K reduced the same K+ currents in healthy myocytes and prevented the pyruvate‐induced current recovery. Conclusion Diabetes reduces K+ current densities in ventricular myocytes due to a defect in channel protein synthesis. Activation of AMP‐K secondary to deterioration in the metabolic status of the cells is responsible for K+ channel reductions.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23181465</pmid><doi>10.1111/apha.12043</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2013-03, Vol.207 (3), p.447-459
issn 1748-1708
1748-1716
language eng
recordid cdi_proquest_miscellaneous_1285085900
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Action Potentials
AMP-Activated Protein Kinases - metabolism
AMPK
Animals
Blood Glucose - drug effects
Blood Glucose - metabolism
Cells
Diabetes Mellitus, Experimental - drug therapy
Diabetes Mellitus, Experimental - metabolism
Energy Metabolism - drug effects
Enzyme Activation
Fluorescent Antibody Technique
heart
Hypoglycemic Agents - pharmacology
insulin
Insulin - pharmacology
metabolism
Mice
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Patch-Clamp Techniques
Potassium - metabolism
Potassium Channels - biosynthesis
Potassium Channels - drug effects
Protein synthesis
Proteins
pyruvate
Pyruvic Acid - metabolism
Rabbits
repolarization
Rodents
Time Factors
title Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20metabolic%20status%20recovers%20cardiac%20potassium%20channel%20synthesis%20in%20experimental%20diabetes&rft.jtitle=Acta%20Physiologica&rft.au=Torres-Jacome,%20J.&rft.date=2013-03&rft.volume=207&rft.issue=3&rft.spage=447&rft.epage=459&rft.pages=447-459&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.12043&rft_dat=%3Cproquest_cross%3E2883740571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284223553&rft_id=info:pmid/23181465&rfr_iscdi=true