Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases

Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2013-02, Vol.161 (2), p.600-616
Hauptverfasser: Hall, Dawn E., Zerbe, Philipp, Jancsik, Sharon, Quesada, Alfonso Lara, Dullat, Harpreet, Madilao, Lina L., Yuen, Macaire, Bohlmann, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 616
container_issue 2
container_start_page 600
container_title Plant physiology (Bethesda)
container_volume 161
creator Hall, Dawn E.
Zerbe, Philipp
Jancsik, Sharon
Quesada, Alfonso Lara
Dullat, Harpreet
Madilao, Lina L.
Yuen, Macaire
Bohlmann, Jörg
description Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.
doi_str_mv 10.1104/pp.112.208546
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283728570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942711</jstor_id><sourcerecordid>41942711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EotOBJUuQN0hsUvyKnbBrh0JbDQLxWEce-xpcMnawk0r9R_2Z9TRD6YLVsc_9dI-uDkIvKDmilIi3w1CUHTHS1EI-Qgtac1axWjSP0YKQ8iZN0x6gw5wvCSGUU_EUHTDOFVFULNDN6VXsp9HHgKPDqxi8g4Tf-xHSAAHwt-sw_tIZ8rsH5lfIPuBj4y0-8THvkOJkXMx1tD9hiD3gL76QOlh8oc3v-XceStgVZPwphuimYHa5ur-jTvwD4z_5z9ATp_sMz_e6RD8-nH5fnVXrzx_PV8fryoiajJUSkhghQRvgut5oqyS1llunFCXKbmjranBCtBR0W1ytCCsTzdpaboyUfInezHuHFP9MkMdu67OBvtcB4pQ7yhquWFMrUtBqRk2KOSdw3ZD8VqfrjpJuV043DEVZN5dT-Ff71dNmC_ae_ttGAV7vAZ2N7l3Swfj8j5MtkU0peIleztxlHmO6nwvainIM5beMbaQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283728570</pqid></control><display><type>article</type><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</creator><creatorcontrib>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</creatorcontrib><description>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.208546</identifier><identifier>PMID: 23370714</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Active sites ; Alkyl and Aryl Transferases - classification ; Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Amino Acid Sequence ; Biocatalysis ; BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Biosynthesis ; Carboxylic Acids - analysis ; Carboxylic Acids - metabolism ; Chromatography, Liquid ; Cloning, Molecular ; Complementary DNA ; Conifers ; Diphosphates ; Diterpenes ; Diterpenes - analysis ; Diterpenes - metabolism ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; Enzymes ; Evolution, Molecular ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gas Chromatography-Mass Spectrometry ; Gymnosperms ; Mass Spectrometry ; Metabolism ; Molecular Sequence Data ; Phenanthrenes - analysis ; Phenanthrenes - metabolism ; Phylogeny ; Pine trees ; Pinus - classification ; Pinus - genetics ; Pinus - metabolism ; Plant physiology and development ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Species Specificity ; Transcriptome - genetics</subject><ispartof>Plant physiology (Bethesda), 2013-02, Vol.161 (2), p.600-616</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</citedby><cites>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26906815$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23370714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Dawn E.</creatorcontrib><creatorcontrib>Zerbe, Philipp</creatorcontrib><creatorcontrib>Jancsik, Sharon</creatorcontrib><creatorcontrib>Quesada, Alfonso Lara</creatorcontrib><creatorcontrib>Dullat, Harpreet</creatorcontrib><creatorcontrib>Madilao, Lina L.</creatorcontrib><creatorcontrib>Yuen, Macaire</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</description><subject>Active sites</subject><subject>Alkyl and Aryl Transferases - classification</subject><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Biocatalysis</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Carboxylic Acids - analysis</subject><subject>Carboxylic Acids - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Conifers</subject><subject>Diphosphates</subject><subject>Diterpenes</subject><subject>Diterpenes - analysis</subject><subject>Diterpenes - metabolism</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gymnosperms</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phenanthrenes - analysis</subject><subject>Phenanthrenes - metabolism</subject><subject>Phylogeny</subject><subject>Pine trees</subject><subject>Pinus - classification</subject><subject>Pinus - genetics</subject><subject>Pinus - metabolism</subject><subject>Plant physiology and development</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Transcriptome - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhS0EotOBJUuQN0hsUvyKnbBrh0JbDQLxWEce-xpcMnawk0r9R_2Z9TRD6YLVsc_9dI-uDkIvKDmilIi3w1CUHTHS1EI-Qgtac1axWjSP0YKQ8iZN0x6gw5wvCSGUU_EUHTDOFVFULNDN6VXsp9HHgKPDqxi8g4Tf-xHSAAHwt-sw_tIZ8rsH5lfIPuBj4y0-8THvkOJkXMx1tD9hiD3gL76QOlh8oc3v-XceStgVZPwphuimYHa5ur-jTvwD4z_5z9ATp_sMz_e6RD8-nH5fnVXrzx_PV8fryoiajJUSkhghQRvgut5oqyS1llunFCXKbmjranBCtBR0W1ytCCsTzdpaboyUfInezHuHFP9MkMdu67OBvtcB4pQ7yhquWFMrUtBqRk2KOSdw3ZD8VqfrjpJuV043DEVZN5dT-Ff71dNmC_ae_ttGAV7vAZ2N7l3Swfj8j5MtkU0peIleztxlHmO6nwvainIM5beMbaQW</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hall, Dawn E.</creator><creator>Zerbe, Philipp</creator><creator>Jancsik, Sharon</creator><creator>Quesada, Alfonso Lara</creator><creator>Dullat, Harpreet</creator><creator>Madilao, Lina L.</creator><creator>Yuen, Macaire</creator><creator>Bohlmann, Jörg</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><author>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active sites</topic><topic>Alkyl and Aryl Transferases - classification</topic><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Biocatalysis</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Carboxylic Acids - analysis</topic><topic>Carboxylic Acids - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Conifers</topic><topic>Diphosphates</topic><topic>Diterpenes</topic><topic>Diterpenes - analysis</topic><topic>Diterpenes - metabolism</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gymnosperms</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phenanthrenes - analysis</topic><topic>Phenanthrenes - metabolism</topic><topic>Phylogeny</topic><topic>Pine trees</topic><topic>Pinus - classification</topic><topic>Pinus - genetics</topic><topic>Pinus - metabolism</topic><topic>Plant physiology and development</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Dawn E.</creatorcontrib><creatorcontrib>Zerbe, Philipp</creatorcontrib><creatorcontrib>Jancsik, Sharon</creatorcontrib><creatorcontrib>Quesada, Alfonso Lara</creatorcontrib><creatorcontrib>Dullat, Harpreet</creatorcontrib><creatorcontrib>Madilao, Lina L.</creatorcontrib><creatorcontrib>Yuen, Macaire</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Dawn E.</au><au>Zerbe, Philipp</au><au>Jancsik, Sharon</au><au>Quesada, Alfonso Lara</au><au>Dullat, Harpreet</au><au>Madilao, Lina L.</au><au>Yuen, Macaire</au><au>Bohlmann, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>161</volume><issue>2</issue><spage>600</spage><epage>616</epage><pages>600-616</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>23370714</pmid><doi>10.1104/pp.112.208546</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2013-02, Vol.161 (2), p.600-616
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_1283728570
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Active sites
Alkyl and Aryl Transferases - classification
Alkyl and Aryl Transferases - genetics
Alkyl and Aryl Transferases - metabolism
Amino Acid Sequence
Biocatalysis
BIOCHEMISTRY AND METABOLISM
Biological and medical sciences
Biosynthesis
Carboxylic Acids - analysis
Carboxylic Acids - metabolism
Chromatography, Liquid
Cloning, Molecular
Complementary DNA
Conifers
Diphosphates
Diterpenes
Diterpenes - analysis
Diterpenes - metabolism
DNA, Complementary - chemistry
DNA, Complementary - genetics
Enzymes
Evolution, Molecular
Forestry
Fundamental and applied biological sciences. Psychology
Gas Chromatography-Mass Spectrometry
Gymnosperms
Mass Spectrometry
Metabolism
Molecular Sequence Data
Phenanthrenes - analysis
Phenanthrenes - metabolism
Phylogeny
Pine trees
Pinus - classification
Pinus - genetics
Pinus - metabolism
Plant physiology and development
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Species Specificity
Transcriptome - genetics
title Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Conifer%20Diterpene%20Synthases:%20Diterpene%20Resin%20Acid%20Biosynthesis%20in%20Lodgepole%20Pine%20and%20Jack%20Pine%20Involves%20Monofunctional%20and%20Bifunctional%20Diterpene%20Synthases&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Hall,%20Dawn%20E.&rft.date=2013-02-01&rft.volume=161&rft.issue=2&rft.spage=600&rft.epage=616&rft.pages=600-616&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.208546&rft_dat=%3Cjstor_proqu%3E41942711%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283728570&rft_id=info:pmid/23370714&rft_jstor_id=41942711&rfr_iscdi=true