Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases
Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cy...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2013-02, Vol.161 (2), p.600-616 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | 2 |
container_start_page | 600 |
container_title | Plant physiology (Bethesda) |
container_volume | 161 |
creator | Hall, Dawn E. Zerbe, Philipp Jancsik, Sharon Quesada, Alfonso Lara Dullat, Harpreet Madilao, Lina L. Yuen, Macaire Bohlmann, Jörg |
description | Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. |
doi_str_mv | 10.1104/pp.112.208546 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283728570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942711</jstor_id><sourcerecordid>41942711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</originalsourceid><addsrcrecordid>eNptkUtv1DAUhS0EotOBJUuQN0hsUvyKnbBrh0JbDQLxWEce-xpcMnawk0r9R_2Z9TRD6YLVsc_9dI-uDkIvKDmilIi3w1CUHTHS1EI-Qgtac1axWjSP0YKQ8iZN0x6gw5wvCSGUU_EUHTDOFVFULNDN6VXsp9HHgKPDqxi8g4Tf-xHSAAHwt-sw_tIZ8rsH5lfIPuBj4y0-8THvkOJkXMx1tD9hiD3gL76QOlh8oc3v-XceStgVZPwphuimYHa5ur-jTvwD4z_5z9ATp_sMz_e6RD8-nH5fnVXrzx_PV8fryoiajJUSkhghQRvgut5oqyS1llunFCXKbmjranBCtBR0W1ytCCsTzdpaboyUfInezHuHFP9MkMdu67OBvtcB4pQ7yhquWFMrUtBqRk2KOSdw3ZD8VqfrjpJuV043DEVZN5dT-Ff71dNmC_ae_ttGAV7vAZ2N7l3Swfj8j5MtkU0peIleztxlHmO6nwvainIM5beMbaQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283728570</pqid></control><display><type>article</type><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</creator><creatorcontrib>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</creatorcontrib><description>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.208546</identifier><identifier>PMID: 23370714</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Active sites ; Alkyl and Aryl Transferases - classification ; Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Amino Acid Sequence ; Biocatalysis ; BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Biosynthesis ; Carboxylic Acids - analysis ; Carboxylic Acids - metabolism ; Chromatography, Liquid ; Cloning, Molecular ; Complementary DNA ; Conifers ; Diphosphates ; Diterpenes ; Diterpenes - analysis ; Diterpenes - metabolism ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; Enzymes ; Evolution, Molecular ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gas Chromatography-Mass Spectrometry ; Gymnosperms ; Mass Spectrometry ; Metabolism ; Molecular Sequence Data ; Phenanthrenes - analysis ; Phenanthrenes - metabolism ; Phylogeny ; Pine trees ; Pinus - classification ; Pinus - genetics ; Pinus - metabolism ; Plant physiology and development ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Analysis, DNA ; Species Specificity ; Transcriptome - genetics</subject><ispartof>Plant physiology (Bethesda), 2013-02, Vol.161 (2), p.600-616</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</citedby><cites>FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26906815$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23370714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Dawn E.</creatorcontrib><creatorcontrib>Zerbe, Philipp</creatorcontrib><creatorcontrib>Jancsik, Sharon</creatorcontrib><creatorcontrib>Quesada, Alfonso Lara</creatorcontrib><creatorcontrib>Dullat, Harpreet</creatorcontrib><creatorcontrib>Madilao, Lina L.</creatorcontrib><creatorcontrib>Yuen, Macaire</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</description><subject>Active sites</subject><subject>Alkyl and Aryl Transferases - classification</subject><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Biocatalysis</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Carboxylic Acids - analysis</subject><subject>Carboxylic Acids - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Cloning, Molecular</subject><subject>Complementary DNA</subject><subject>Conifers</subject><subject>Diphosphates</subject><subject>Diterpenes</subject><subject>Diterpenes - analysis</subject><subject>Diterpenes - metabolism</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gymnosperms</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phenanthrenes - analysis</subject><subject>Phenanthrenes - metabolism</subject><subject>Phylogeny</subject><subject>Pine trees</subject><subject>Pinus - classification</subject><subject>Pinus - genetics</subject><subject>Pinus - metabolism</subject><subject>Plant physiology and development</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Transcriptome - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtv1DAUhS0EotOBJUuQN0hsUvyKnbBrh0JbDQLxWEce-xpcMnawk0r9R_2Z9TRD6YLVsc_9dI-uDkIvKDmilIi3w1CUHTHS1EI-Qgtac1axWjSP0YKQ8iZN0x6gw5wvCSGUU_EUHTDOFVFULNDN6VXsp9HHgKPDqxi8g4Tf-xHSAAHwt-sw_tIZ8rsH5lfIPuBj4y0-8THvkOJkXMx1tD9hiD3gL76QOlh8oc3v-XceStgVZPwphuimYHa5ur-jTvwD4z_5z9ATp_sMz_e6RD8-nH5fnVXrzx_PV8fryoiajJUSkhghQRvgut5oqyS1llunFCXKbmjranBCtBR0W1ytCCsTzdpaboyUfInezHuHFP9MkMdu67OBvtcB4pQ7yhquWFMrUtBqRk2KOSdw3ZD8VqfrjpJuV043DEVZN5dT-Ff71dNmC_ae_ttGAV7vAZ2N7l3Swfj8j5MtkU0peIleztxlHmO6nwvainIM5beMbaQW</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hall, Dawn E.</creator><creator>Zerbe, Philipp</creator><creator>Jancsik, Sharon</creator><creator>Quesada, Alfonso Lara</creator><creator>Dullat, Harpreet</creator><creator>Madilao, Lina L.</creator><creator>Yuen, Macaire</creator><creator>Bohlmann, Jörg</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</title><author>Hall, Dawn E. ; Zerbe, Philipp ; Jancsik, Sharon ; Quesada, Alfonso Lara ; Dullat, Harpreet ; Madilao, Lina L. ; Yuen, Macaire ; Bohlmann, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-7460c46eace3a5bad761dd3df77107db19f5ef4491ea9df7a702710a2956bc663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active sites</topic><topic>Alkyl and Aryl Transferases - classification</topic><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Biocatalysis</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Carboxylic Acids - analysis</topic><topic>Carboxylic Acids - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Cloning, Molecular</topic><topic>Complementary DNA</topic><topic>Conifers</topic><topic>Diphosphates</topic><topic>Diterpenes</topic><topic>Diterpenes - analysis</topic><topic>Diterpenes - metabolism</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gymnosperms</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phenanthrenes - analysis</topic><topic>Phenanthrenes - metabolism</topic><topic>Phylogeny</topic><topic>Pine trees</topic><topic>Pinus - classification</topic><topic>Pinus - genetics</topic><topic>Pinus - metabolism</topic><topic>Plant physiology and development</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Dawn E.</creatorcontrib><creatorcontrib>Zerbe, Philipp</creatorcontrib><creatorcontrib>Jancsik, Sharon</creatorcontrib><creatorcontrib>Quesada, Alfonso Lara</creatorcontrib><creatorcontrib>Dullat, Harpreet</creatorcontrib><creatorcontrib>Madilao, Lina L.</creatorcontrib><creatorcontrib>Yuen, Macaire</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Dawn E.</au><au>Zerbe, Philipp</au><au>Jancsik, Sharon</au><au>Quesada, Alfonso Lara</au><au>Dullat, Harpreet</au><au>Madilao, Lina L.</au><au>Yuen, Macaire</au><au>Bohlmann, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>161</volume><issue>2</issue><spage>600</spage><epage>616</epage><pages>600-616</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>23370714</pmid><doi>10.1104/pp.112.208546</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2013-02, Vol.161 (2), p.600-616 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283728570 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Active sites Alkyl and Aryl Transferases - classification Alkyl and Aryl Transferases - genetics Alkyl and Aryl Transferases - metabolism Amino Acid Sequence Biocatalysis BIOCHEMISTRY AND METABOLISM Biological and medical sciences Biosynthesis Carboxylic Acids - analysis Carboxylic Acids - metabolism Chromatography, Liquid Cloning, Molecular Complementary DNA Conifers Diphosphates Diterpenes Diterpenes - analysis Diterpenes - metabolism DNA, Complementary - chemistry DNA, Complementary - genetics Enzymes Evolution, Molecular Forestry Fundamental and applied biological sciences. Psychology Gas Chromatography-Mass Spectrometry Gymnosperms Mass Spectrometry Metabolism Molecular Sequence Data Phenanthrenes - analysis Phenanthrenes - metabolism Phylogeny Pine trees Pinus - classification Pinus - genetics Pinus - metabolism Plant physiology and development Reverse Transcriptase Polymerase Chain Reaction Sequence Analysis, DNA Species Specificity Transcriptome - genetics |
title | Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Conifer%20Diterpene%20Synthases:%20Diterpene%20Resin%20Acid%20Biosynthesis%20in%20Lodgepole%20Pine%20and%20Jack%20Pine%20Involves%20Monofunctional%20and%20Bifunctional%20Diterpene%20Synthases&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Hall,%20Dawn%20E.&rft.date=2013-02-01&rft.volume=161&rft.issue=2&rft.spage=600&rft.epage=616&rft.pages=600-616&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.208546&rft_dat=%3Cjstor_proqu%3E41942711%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283728570&rft_id=info:pmid/23370714&rft_jstor_id=41942711&rfr_iscdi=true |