Responsive biomimetic networks from polyisocyanopeptide hydrogels
Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels. Biomimetic polym...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-01, Vol.493 (7434), p.651-655 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 7434 |
container_start_page | 651 |
container_title | Nature (London) |
container_volume | 493 |
creator | Kouwer, Paul H. J. Koepf, Matthieu Le Sage, Vincent A. A. Jaspers, Maarten van Buul, Arend M. Eksteen-Akeroyd, Zaskia H. Woltinge, Tim Schwartz, Erik Kitto, Heather J. Hoogenboom, Richard Picken, Stephen J. Nolte, Roeland J. M. Mendes, Eduardo Rowan, Alan E. |
description | Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.
Biomimetic polymer networks
This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks.
Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells
1
,
2
. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen
3
,
4
. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum
1
. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides
5
,
6
,
7
grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model
8
,
9
,
10
, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design par |
doi_str_mv | 10.1038/nature11839 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283726632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318105082</galeid><sourcerecordid>A318105082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c777t-dbeff97a2d8f32c329f9599a81929562c97cc29f819a18e63624783aba46ad2d3</originalsourceid><addsrcrecordid>eNqF091r1TAYB-AiijtOr7yXogiKduajzcfl4eDHYCjMiZchJ31bM9ukS1q389_bw46uRzpHLkrSp783oW-S5ClGRxhR8c7pfgiAsaDyXrLAOWdZzgS_nywQIiJDgrKD5FGM5wihAvP8YXJAKC1ylItFsjyF2HkX7S9I19a3toXemtRBf-nDz5hWwbdp55uNjd5stPMddL0tIf2xKYOvoYmPkweVbiI82T0Pk28f3p-tPmUnXz4er5YnmeGc91m5hqqSXJNSVJQYSmQlCym1wJLIghEjuTHj4jjXWACjjORcUL3WOdMlKelh8uo6twv-YoDYq9ZGA02jHfghKkwE5YQxSkb64h967ofgxt0pTHEhJM8xvlG1bkBZV_k-aLMNVUtGMEZS5PK_imKBUYHEtmI2o2pwEHTjHVR2XN7zz2e86eyFmpa-FU2TjmbQOEporZkt_Xrvg9H0cNXXeohRHX893T_8XXaa--Z2uzz7vvq8n3y3nsk2wccYoFJdsK0OG4WR2l4CNbkEo362-_3DuoXyr_3T9SN4uQM6Gt1UQTtj441jEmGZbzvk7bWL4ytXQ5j00Uzd3_OhFVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315897411</pqid></control><display><type>article</type><title>Responsive biomimetic networks from polyisocyanopeptide hydrogels</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kouwer, Paul H. J. ; Koepf, Matthieu ; Le Sage, Vincent A. A. ; Jaspers, Maarten ; van Buul, Arend M. ; Eksteen-Akeroyd, Zaskia H. ; Woltinge, Tim ; Schwartz, Erik ; Kitto, Heather J. ; Hoogenboom, Richard ; Picken, Stephen J. ; Nolte, Roeland J. M. ; Mendes, Eduardo ; Rowan, Alan E.</creator><creatorcontrib>Kouwer, Paul H. J. ; Koepf, Matthieu ; Le Sage, Vincent A. A. ; Jaspers, Maarten ; van Buul, Arend M. ; Eksteen-Akeroyd, Zaskia H. ; Woltinge, Tim ; Schwartz, Erik ; Kitto, Heather J. ; Hoogenboom, Richard ; Picken, Stephen J. ; Nolte, Roeland J. M. ; Mendes, Eduardo ; Rowan, Alan E.</creatorcontrib><description>Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.
Biomimetic polymer networks
This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks.
Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells
1
,
2
. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen
3
,
4
. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum
1
. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides
5
,
6
,
7
grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model
8
,
9
,
10
, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications
11
,
12
,
13
,
14
, in particular in the biomedical field.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11839</identifier><identifier>PMID: 23354048</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/303 ; 639/638/92/56 ; 639/925/357/341 ; Actin ; Applied sciences ; Aqueous solutions ; Biomimetic Materials - analysis ; Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Biomimetics ; Colloids ; Exact sciences and technology ; Gels ; Humanities and Social Sciences ; Hydrogels ; Hydrogels - analysis ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Intermediate filament proteins ; letter ; Materials research ; Mechanical properties ; Microscopy ; Models, Theoretical ; multidisciplinary ; Muscle proteins ; Organic polymers ; Peptides ; Peptides - chemistry ; Phase transitions ; Physicochemistry of polymers ; Polymer crosslinking ; Polymers ; Polymers - analysis ; Polymers - chemistry ; Polyurethanes - chemistry ; Pore size ; Properties ; Properties and characterization ; Rheology ; Science ; Solution and gel properties ; Stress ; Temperature</subject><ispartof>Nature (London), 2013-01, Vol.493 (7434), p.651-655</ispartof><rights>Springer Nature Limited 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 31, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c777t-dbeff97a2d8f32c329f9599a81929562c97cc29f819a18e63624783aba46ad2d3</citedby><cites>FETCH-LOGICAL-c777t-dbeff97a2d8f32c329f9599a81929562c97cc29f819a18e63624783aba46ad2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11839$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11839$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23354048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouwer, Paul H. J.</creatorcontrib><creatorcontrib>Koepf, Matthieu</creatorcontrib><creatorcontrib>Le Sage, Vincent A. A.</creatorcontrib><creatorcontrib>Jaspers, Maarten</creatorcontrib><creatorcontrib>van Buul, Arend M.</creatorcontrib><creatorcontrib>Eksteen-Akeroyd, Zaskia H.</creatorcontrib><creatorcontrib>Woltinge, Tim</creatorcontrib><creatorcontrib>Schwartz, Erik</creatorcontrib><creatorcontrib>Kitto, Heather J.</creatorcontrib><creatorcontrib>Hoogenboom, Richard</creatorcontrib><creatorcontrib>Picken, Stephen J.</creatorcontrib><creatorcontrib>Nolte, Roeland J. M.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>Rowan, Alan E.</creatorcontrib><title>Responsive biomimetic networks from polyisocyanopeptide hydrogels</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.
Biomimetic polymer networks
This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks.
Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells
1
,
2
. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen
3
,
4
. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum
1
. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides
5
,
6
,
7
grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model
8
,
9
,
10
, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications
11
,
12
,
13
,
14
, in particular in the biomedical field.</description><subject>639/638/298/303</subject><subject>639/638/92/56</subject><subject>639/925/357/341</subject><subject>Actin</subject><subject>Applied sciences</subject><subject>Aqueous solutions</subject><subject>Biomimetic Materials - analysis</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Colloids</subject><subject>Exact sciences and technology</subject><subject>Gels</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>Hydrogels - analysis</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Intermediate filament proteins</subject><subject>letter</subject><subject>Materials research</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Muscle proteins</subject><subject>Organic polymers</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Phase transitions</subject><subject>Physicochemistry of polymers</subject><subject>Polymer crosslinking</subject><subject>Polymers</subject><subject>Polymers - analysis</subject><subject>Polymers - chemistry</subject><subject>Polyurethanes - chemistry</subject><subject>Pore size</subject><subject>Properties</subject><subject>Properties and characterization</subject><subject>Rheology</subject><subject>Science</subject><subject>Solution and gel properties</subject><subject>Stress</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF091r1TAYB-AiijtOr7yXogiKduajzcfl4eDHYCjMiZchJ31bM9ukS1q389_bw46uRzpHLkrSp783oW-S5ClGRxhR8c7pfgiAsaDyXrLAOWdZzgS_nywQIiJDgrKD5FGM5wihAvP8YXJAKC1ylItFsjyF2HkX7S9I19a3toXemtRBf-nDz5hWwbdp55uNjd5stPMddL0tIf2xKYOvoYmPkweVbiI82T0Pk28f3p-tPmUnXz4er5YnmeGc91m5hqqSXJNSVJQYSmQlCym1wJLIghEjuTHj4jjXWACjjORcUL3WOdMlKelh8uo6twv-YoDYq9ZGA02jHfghKkwE5YQxSkb64h967ofgxt0pTHEhJM8xvlG1bkBZV_k-aLMNVUtGMEZS5PK_imKBUYHEtmI2o2pwEHTjHVR2XN7zz2e86eyFmpa-FU2TjmbQOEporZkt_Xrvg9H0cNXXeohRHX893T_8XXaa--Z2uzz7vvq8n3y3nsk2wccYoFJdsK0OG4WR2l4CNbkEo362-_3DuoXyr_3T9SN4uQM6Gt1UQTtj441jEmGZbzvk7bWL4ytXQ5j00Uzd3_OhFVs</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Kouwer, Paul H. J.</creator><creator>Koepf, Matthieu</creator><creator>Le Sage, Vincent A. A.</creator><creator>Jaspers, Maarten</creator><creator>van Buul, Arend M.</creator><creator>Eksteen-Akeroyd, Zaskia H.</creator><creator>Woltinge, Tim</creator><creator>Schwartz, Erik</creator><creator>Kitto, Heather J.</creator><creator>Hoogenboom, Richard</creator><creator>Picken, Stephen J.</creator><creator>Nolte, Roeland J. M.</creator><creator>Mendes, Eduardo</creator><creator>Rowan, Alan E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130131</creationdate><title>Responsive biomimetic networks from polyisocyanopeptide hydrogels</title><author>Kouwer, Paul H. J. ; Koepf, Matthieu ; Le Sage, Vincent A. A. ; Jaspers, Maarten ; van Buul, Arend M. ; Eksteen-Akeroyd, Zaskia H. ; Woltinge, Tim ; Schwartz, Erik ; Kitto, Heather J. ; Hoogenboom, Richard ; Picken, Stephen J. ; Nolte, Roeland J. M. ; Mendes, Eduardo ; Rowan, Alan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c777t-dbeff97a2d8f32c329f9599a81929562c97cc29f819a18e63624783aba46ad2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/638/298/303</topic><topic>639/638/92/56</topic><topic>639/925/357/341</topic><topic>Actin</topic><topic>Applied sciences</topic><topic>Aqueous solutions</topic><topic>Biomimetic Materials - analysis</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Colloids</topic><topic>Exact sciences and technology</topic><topic>Gels</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>Hydrogels - analysis</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Intermediate filament proteins</topic><topic>letter</topic><topic>Materials research</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Muscle proteins</topic><topic>Organic polymers</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Phase transitions</topic><topic>Physicochemistry of polymers</topic><topic>Polymer crosslinking</topic><topic>Polymers</topic><topic>Polymers - analysis</topic><topic>Polymers - chemistry</topic><topic>Polyurethanes - chemistry</topic><topic>Pore size</topic><topic>Properties</topic><topic>Properties and characterization</topic><topic>Rheology</topic><topic>Science</topic><topic>Solution and gel properties</topic><topic>Stress</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouwer, Paul H. J.</creatorcontrib><creatorcontrib>Koepf, Matthieu</creatorcontrib><creatorcontrib>Le Sage, Vincent A. A.</creatorcontrib><creatorcontrib>Jaspers, Maarten</creatorcontrib><creatorcontrib>van Buul, Arend M.</creatorcontrib><creatorcontrib>Eksteen-Akeroyd, Zaskia H.</creatorcontrib><creatorcontrib>Woltinge, Tim</creatorcontrib><creatorcontrib>Schwartz, Erik</creatorcontrib><creatorcontrib>Kitto, Heather J.</creatorcontrib><creatorcontrib>Hoogenboom, Richard</creatorcontrib><creatorcontrib>Picken, Stephen J.</creatorcontrib><creatorcontrib>Nolte, Roeland J. M.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>Rowan, Alan E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouwer, Paul H. J.</au><au>Koepf, Matthieu</au><au>Le Sage, Vincent A. A.</au><au>Jaspers, Maarten</au><au>van Buul, Arend M.</au><au>Eksteen-Akeroyd, Zaskia H.</au><au>Woltinge, Tim</au><au>Schwartz, Erik</au><au>Kitto, Heather J.</au><au>Hoogenboom, Richard</au><au>Picken, Stephen J.</au><au>Nolte, Roeland J. M.</au><au>Mendes, Eduardo</au><au>Rowan, Alan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responsive biomimetic networks from polyisocyanopeptide hydrogels</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-01-31</date><risdate>2013</risdate><volume>493</volume><issue>7434</issue><spage>651</spage><epage>655</epage><pages>651-655</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.
Biomimetic polymer networks
This paper describes a new class of water-soluble, relatively stiff polymers that bundle in a controlled manner on heating to produce very stiff fibres. These fibres, in turn, form hydrogels that very closely mimic components of the cell cytoskeleton, intermediate filaments. Synthesis involves the thermal transition of polyisocyanide polymers from single molecules to bundles of polymer chains. Networks made with this material demonstrate a stress-stiffening behaviour that is usually absent in synthetic polymer gels, and their mechanical properties can be modified by altering the chemical structure of the polymer, offering greater versatility than biopolymer networks.
Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells
1
,
2
. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen
3
,
4
. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum
1
. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides
5
,
6
,
7
grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model
8
,
9
,
10
, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications
11
,
12
,
13
,
14
, in particular in the biomedical field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23354048</pmid><doi>10.1038/nature11839</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-01, Vol.493 (7434), p.651-655 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283726632 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/638/298/303 639/638/92/56 639/925/357/341 Actin Applied sciences Aqueous solutions Biomimetic Materials - analysis Biomimetic Materials - chemical synthesis Biomimetic Materials - chemistry Biomimetics Colloids Exact sciences and technology Gels Humanities and Social Sciences Hydrogels Hydrogels - analysis Hydrogels - chemical synthesis Hydrogels - chemistry Intermediate filament proteins letter Materials research Mechanical properties Microscopy Models, Theoretical multidisciplinary Muscle proteins Organic polymers Peptides Peptides - chemistry Phase transitions Physicochemistry of polymers Polymer crosslinking Polymers Polymers - analysis Polymers - chemistry Polyurethanes - chemistry Pore size Properties Properties and characterization Rheology Science Solution and gel properties Stress Temperature |
title | Responsive biomimetic networks from polyisocyanopeptide hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responsive%20biomimetic%20networks%20from%20polyisocyanopeptide%20hydrogels&rft.jtitle=Nature%20(London)&rft.au=Kouwer,%20Paul%20H.%20J.&rft.date=2013-01-31&rft.volume=493&rft.issue=7434&rft.spage=651&rft.epage=655&rft.pages=651-655&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11839&rft_dat=%3Cgale_proqu%3EA318105082%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315897411&rft_id=info:pmid/23354048&rft_galeid=A318105082&rfr_iscdi=true |