Riemannian formulation and comparison of color difference formulas

Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Color research and application 2012-12, Vol.37 (6), p.429-440
Hauptverfasser: Raj Pant, Dibakar, Farup, Ivar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 6
container_start_page 429
container_title Color research and application
container_volume 37
creator Raj Pant, Dibakar
Farup, Ivar
description Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;
doi_str_mv 10.1002/col.20710
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283723489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283723489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8Ee9bBtPjbJ9miLVqFYsUq9hWk2gehuUpMW7b93da03T8MLzzPMvAidEzwgGNOhDvWAYknwAeoRTnEumCwPUQ8zQXLKiDxGJym9Yow5K2UPjR-dacB7Bz6zITbbGjYu-Ax8lenQrCG61MZg21SHmFXOWhON12aPp1N0ZKFO5ux39tHzzfXT5Dafzad3k6tZrgtatIeUshDA-Qo0KQWxKwGCrjRh2MCIgMESKuDGWmILy7msBNG8oGUlq6JlgfXRRbd3HcP71qSNalzSpq7Bm7BNitCSScqKctSilx2qY0gpGqvW0TUQd4pg9d2Tar9RPz217LBjP1xtdv-DajKf7Y28M1zamM8_A-KbEpJJrpb3UzVaPizGL4ulGrMv8nB5mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283723489</pqid></control><display><type>article</type><title>Riemannian formulation and comparison of color difference formulas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raj Pant, Dibakar ; Farup, Ivar</creator><creatorcontrib>Raj Pant, Dibakar ; Farup, Ivar</creatorcontrib><description>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.20710</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Chromaticity ; Color ; color difference metric ; ellipse ; Ellipses ; Jacobian method ; Mathematical analysis ; Mathematical models ; Matrices ; Riemannian geometry ; Tensors ; Three dimensional</subject><ispartof>Color research and application, 2012-12, Vol.37 (6), p.429-440</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</citedby><cites>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.20710$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.20710$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Raj Pant, Dibakar</creatorcontrib><creatorcontrib>Farup, Ivar</creatorcontrib><title>Riemannian formulation and comparison of color difference formulas</title><title>Color research and application</title><addtitle>Color Res. Appl</addtitle><description>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</description><subject>Chromaticity</subject><subject>Color</subject><subject>color difference metric</subject><subject>ellipse</subject><subject>Ellipses</subject><subject>Jacobian method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Riemannian geometry</subject><subject>Tensors</subject><subject>Three dimensional</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8Ee9bBtPjbJ9miLVqFYsUq9hWk2gehuUpMW7b93da03T8MLzzPMvAidEzwgGNOhDvWAYknwAeoRTnEumCwPUQ8zQXLKiDxGJym9Yow5K2UPjR-dacB7Bz6zITbbGjYu-Ax8lenQrCG61MZg21SHmFXOWhON12aPp1N0ZKFO5ux39tHzzfXT5Dafzad3k6tZrgtatIeUshDA-Qo0KQWxKwGCrjRh2MCIgMESKuDGWmILy7msBNG8oGUlq6JlgfXRRbd3HcP71qSNalzSpq7Bm7BNitCSScqKctSilx2qY0gpGqvW0TUQd4pg9d2Tar9RPz217LBjP1xtdv-DajKf7Y28M1zamM8_A-KbEpJJrpb3UzVaPizGL4ulGrMv8nB5mQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Raj Pant, Dibakar</creator><creator>Farup, Ivar</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201212</creationdate><title>Riemannian formulation and comparison of color difference formulas</title><author>Raj Pant, Dibakar ; Farup, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chromaticity</topic><topic>Color</topic><topic>color difference metric</topic><topic>ellipse</topic><topic>Ellipses</topic><topic>Jacobian method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Riemannian geometry</topic><topic>Tensors</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj Pant, Dibakar</creatorcontrib><creatorcontrib>Farup, Ivar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj Pant, Dibakar</au><au>Farup, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemannian formulation and comparison of color difference formulas</atitle><jtitle>Color research and application</jtitle><addtitle>Color Res. Appl</addtitle><date>2012-12</date><risdate>2012</risdate><volume>37</volume><issue>6</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/col.20710</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-2317
ispartof Color research and application, 2012-12, Vol.37 (6), p.429-440
issn 0361-2317
1520-6378
language eng
recordid cdi_proquest_miscellaneous_1283723489
source Wiley Online Library Journals Frontfile Complete
subjects Chromaticity
Color
color difference metric
ellipse
Ellipses
Jacobian method
Mathematical analysis
Mathematical models
Matrices
Riemannian geometry
Tensors
Three dimensional
title Riemannian formulation and comparison of color difference formulas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemannian%20formulation%20and%20comparison%20of%20color%20difference%20formulas&rft.jtitle=Color%20research%20and%20application&rft.au=Raj%20Pant,%20Dibakar&rft.date=2012-12&rft.volume=37&rft.issue=6&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.20710&rft_dat=%3Cproquest_cross%3E1283723489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283723489&rft_id=info:pmid/&rfr_iscdi=true