Riemannian formulation and comparison of color difference formulas
Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical fo...
Gespeichert in:
Veröffentlicht in: | Color research and application 2012-12, Vol.37 (6), p.429-440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 6 |
container_start_page | 429 |
container_title | Color research and application |
container_volume | 37 |
creator | Raj Pant, Dibakar Farup, Ivar |
description | Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011; |
doi_str_mv | 10.1002/col.20710 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283723489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283723489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8Ee9bBtPjbJ9miLVqFYsUq9hWk2gehuUpMW7b93da03T8MLzzPMvAidEzwgGNOhDvWAYknwAeoRTnEumCwPUQ8zQXLKiDxGJym9Yow5K2UPjR-dacB7Bz6zITbbGjYu-Ax8lenQrCG61MZg21SHmFXOWhON12aPp1N0ZKFO5ux39tHzzfXT5Dafzad3k6tZrgtatIeUshDA-Qo0KQWxKwGCrjRh2MCIgMESKuDGWmILy7msBNG8oGUlq6JlgfXRRbd3HcP71qSNalzSpq7Bm7BNitCSScqKctSilx2qY0gpGqvW0TUQd4pg9d2Tar9RPz217LBjP1xtdv-DajKf7Y28M1zamM8_A-KbEpJJrpb3UzVaPizGL4ulGrMv8nB5mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283723489</pqid></control><display><type>article</type><title>Riemannian formulation and comparison of color difference formulas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Raj Pant, Dibakar ; Farup, Ivar</creator><creatorcontrib>Raj Pant, Dibakar ; Farup, Ivar</creatorcontrib><description>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.20710</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Chromaticity ; Color ; color difference metric ; ellipse ; Ellipses ; Jacobian method ; Mathematical analysis ; Mathematical models ; Matrices ; Riemannian geometry ; Tensors ; Three dimensional</subject><ispartof>Color research and application, 2012-12, Vol.37 (6), p.429-440</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</citedby><cites>FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.20710$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.20710$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Raj Pant, Dibakar</creatorcontrib><creatorcontrib>Farup, Ivar</creatorcontrib><title>Riemannian formulation and comparison of color difference formulas</title><title>Color research and application</title><addtitle>Color Res. Appl</addtitle><description>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</description><subject>Chromaticity</subject><subject>Color</subject><subject>color difference metric</subject><subject>ellipse</subject><subject>Ellipses</subject><subject>Jacobian method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Riemannian geometry</subject><subject>Tensors</subject><subject>Three dimensional</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8Ee9bBtPjbJ9miLVqFYsUq9hWk2gehuUpMW7b93da03T8MLzzPMvAidEzwgGNOhDvWAYknwAeoRTnEumCwPUQ8zQXLKiDxGJym9Yow5K2UPjR-dacB7Bz6zITbbGjYu-Ax8lenQrCG61MZg21SHmFXOWhON12aPp1N0ZKFO5ux39tHzzfXT5Dafzad3k6tZrgtatIeUshDA-Qo0KQWxKwGCrjRh2MCIgMESKuDGWmILy7msBNG8oGUlq6JlgfXRRbd3HcP71qSNalzSpq7Bm7BNitCSScqKctSilx2qY0gpGqvW0TUQd4pg9d2Tar9RPz217LBjP1xtdv-DajKf7Y28M1zamM8_A-KbEpJJrpb3UzVaPizGL4ulGrMv8nB5mQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Raj Pant, Dibakar</creator><creator>Farup, Ivar</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201212</creationdate><title>Riemannian formulation and comparison of color difference formulas</title><author>Raj Pant, Dibakar ; Farup, Ivar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-68746a55bac1861fb6a62bc130ea91ae07ada5eff1f4f557d61c5428d7d4b6aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chromaticity</topic><topic>Color</topic><topic>color difference metric</topic><topic>ellipse</topic><topic>Ellipses</topic><topic>Jacobian method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Riemannian geometry</topic><topic>Tensors</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj Pant, Dibakar</creatorcontrib><creatorcontrib>Farup, Ivar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj Pant, Dibakar</au><au>Farup, Ivar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemannian formulation and comparison of color difference formulas</atitle><jtitle>Color research and application</jtitle><addtitle>Color Res. Appl</addtitle><date>2012-12</date><risdate>2012</risdate><volume>37</volume><issue>6</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>Study of various color difference formulas by the Riemannian approach is useful. By this approach, it is possible to evaluate the performance of various color difference formulas having different color spaces for measuring visual color difference. In this article, the authors present mathematical formulations of CIELAB (ΔE ab*), CIELUV (ΔE uv*), OSA‐UCS (ΔEE) and infinitesimal approximation of CIEDE2000 (ΔE00) as Riemannian metric tensors in a color space. It is shown how such metrics are transformed in other color spaces by means of Jacobian matrices. The coefficients of such metrics give equi‐distance ellipsoids in three dimensions and ellipses in two dimensions. A method is also proposed for comparing the similarity between a pair of ellipses. The technique works by calculating the ratio of the area of intersection and the area of union of a pair of ellipses. The performance of these four color difference formulas is evaluated by comparing computed ellipses with experimentally observed ellipses in the xy chromaticity diagram. The result shows that there is no significant difference between the Riemannized ΔE00 and the ΔEE at small color difference, but they are both notably better than ΔE ab* and ΔE uv*. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/col.20710</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-2317 |
ispartof | Color research and application, 2012-12, Vol.37 (6), p.429-440 |
issn | 0361-2317 1520-6378 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283723489 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chromaticity Color color difference metric ellipse Ellipses Jacobian method Mathematical analysis Mathematical models Matrices Riemannian geometry Tensors Three dimensional |
title | Riemannian formulation and comparison of color difference formulas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemannian%20formulation%20and%20comparison%20of%20color%20difference%20formulas&rft.jtitle=Color%20research%20and%20application&rft.au=Raj%20Pant,%20Dibakar&rft.date=2012-12&rft.volume=37&rft.issue=6&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.20710&rft_dat=%3Cproquest_cross%3E1283723489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283723489&rft_id=info:pmid/&rfr_iscdi=true |