Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes

The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-01, Vol.15 (1), p.154-158
Hauptverfasser: NABIKA, Hideki, SATO, Mami, UNOURA, Kei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 1
container_start_page 154
container_title Physical chemistry chemical physics : PCCP
container_volume 15
creator NABIKA, Hideki
SATO, Mami
UNOURA, Kei
description The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.
doi_str_mv 10.1039/c2cp43153j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283715967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237504864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</originalsourceid><addsrcrecordid>eNqNkctOxSAQhonReDm68QEMGxNjUoVCobgzJ16j0YWuGw4MimlpLT0aXfjsci7q1tXMZL4ZmP9HaJeSI0qYOja56TijBXtZQZuUC5YpUvLV31yKDbQV4wshhBaUraONnFEupVKb6OvWm741zzoEqDMf7NSAxbP6CXDrUgaNN7rG7_oNcNe3nX7Sg28Dth9Bp1Y8wb7p2n7Qwcwn-lkbT2B4Bwh4eAbsQw0D1sHOq-VbOPpPiNtozek6ws4yjtDj-dnD-DK7ubu4Gp_eZIZTMWRGM1faMleTQjgBxHFKtZWlFUrmSjPrCmOAc-qIc0xyBtKkG5UW4MARYCN0sNibLnidQhyqxkcDda0DtNNY0bxkkhZKyH-gTBaEl4In9HCBJglj7MFVXe8b3X9UlFQza6pxPr6fW3Od4L3l3umkAfuL_niRgP0loGNS3PVJUR__uPS_kouCfQOewphB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237504864</pqid></control><display><type>article</type><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</creator><creatorcontrib>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</creatorcontrib><description>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp43153j</identifier><identifier>PMID: 23147799</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biological Clocks ; Channels ; Chemistry ; Computer Simulation ; Diffusion ; Dynamics ; Equipment Design ; Exact sciences and technology ; General and physical chemistry ; Inlets ; Microchannels ; Microfluidics - instrumentation ; Models, Chemical ; Propagation velocity ; Protons ; Wave fronts ; Wave propagation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2013-01, Vol.15 (1), p.154-158</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</citedby><cites>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27158465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23147799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NABIKA, Hideki</creatorcontrib><creatorcontrib>SATO, Mami</creatorcontrib><creatorcontrib>UNOURA, Kei</creatorcontrib><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</description><subject>Biological Clocks</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Dynamics</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Inlets</subject><subject>Microchannels</subject><subject>Microfluidics - instrumentation</subject><subject>Models, Chemical</subject><subject>Propagation velocity</subject><subject>Protons</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOxSAQhonReDm68QEMGxNjUoVCobgzJ16j0YWuGw4MimlpLT0aXfjsci7q1tXMZL4ZmP9HaJeSI0qYOja56TijBXtZQZuUC5YpUvLV31yKDbQV4wshhBaUraONnFEupVKb6OvWm741zzoEqDMf7NSAxbP6CXDrUgaNN7rG7_oNcNe3nX7Sg28Dth9Bp1Y8wb7p2n7Qwcwn-lkbT2B4Bwh4eAbsQw0D1sHOq-VbOPpPiNtozek6ws4yjtDj-dnD-DK7ubu4Gp_eZIZTMWRGM1faMleTQjgBxHFKtZWlFUrmSjPrCmOAc-qIc0xyBtKkG5UW4MARYCN0sNibLnidQhyqxkcDda0DtNNY0bxkkhZKyH-gTBaEl4In9HCBJglj7MFVXe8b3X9UlFQza6pxPr6fW3Od4L3l3umkAfuL_niRgP0loGNS3PVJUR__uPS_kouCfQOewphB</recordid><startdate>20130107</startdate><enddate>20130107</enddate><creator>NABIKA, Hideki</creator><creator>SATO, Mami</creator><creator>UNOURA, Kei</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130107</creationdate><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><author>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Clocks</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Dynamics</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Inlets</topic><topic>Microchannels</topic><topic>Microfluidics - instrumentation</topic><topic>Models, Chemical</topic><topic>Propagation velocity</topic><topic>Protons</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NABIKA, Hideki</creatorcontrib><creatorcontrib>SATO, Mami</creatorcontrib><creatorcontrib>UNOURA, Kei</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NABIKA, Hideki</au><au>SATO, Mami</au><au>UNOURA, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-01-07</date><risdate>2013</risdate><volume>15</volume><issue>1</issue><spage>154</spage><epage>158</epage><pages>154-158</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23147799</pmid><doi>10.1039/c2cp43153j</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2013-01, Vol.15 (1), p.154-158
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1283715967
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological Clocks
Channels
Chemistry
Computer Simulation
Diffusion
Dynamics
Equipment Design
Exact sciences and technology
General and physical chemistry
Inlets
Microchannels
Microfluidics - instrumentation
Models, Chemical
Propagation velocity
Protons
Wave fronts
Wave propagation
title Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microchannel-induced%20change%20of%20chemical%20wave%20propagation%20dynamics:%20importance%20of%20ratio%20between%20the%20inlet%20and%20the%20channel%20sizes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=NABIKA,%20Hideki&rft.date=2013-01-07&rft.volume=15&rft.issue=1&rft.spage=154&rft.epage=158&rft.pages=154-158&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp43153j&rft_dat=%3Cproquest_cross%3E1237504864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237504864&rft_id=info:pmid/23147799&rfr_iscdi=true