Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes
The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune t...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2013-01, Vol.15 (1), p.154-158 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 1 |
container_start_page | 154 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 15 |
creator | NABIKA, Hideki SATO, Mami UNOURA, Kei |
description | The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation. |
doi_str_mv | 10.1039/c2cp43153j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283715967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237504864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</originalsourceid><addsrcrecordid>eNqNkctOxSAQhonReDm68QEMGxNjUoVCobgzJ16j0YWuGw4MimlpLT0aXfjsci7q1tXMZL4ZmP9HaJeSI0qYOja56TijBXtZQZuUC5YpUvLV31yKDbQV4wshhBaUraONnFEupVKb6OvWm741zzoEqDMf7NSAxbP6CXDrUgaNN7rG7_oNcNe3nX7Sg28Dth9Bp1Y8wb7p2n7Qwcwn-lkbT2B4Bwh4eAbsQw0D1sHOq-VbOPpPiNtozek6ws4yjtDj-dnD-DK7ubu4Gp_eZIZTMWRGM1faMleTQjgBxHFKtZWlFUrmSjPrCmOAc-qIc0xyBtKkG5UW4MARYCN0sNibLnidQhyqxkcDda0DtNNY0bxkkhZKyH-gTBaEl4In9HCBJglj7MFVXe8b3X9UlFQza6pxPr6fW3Od4L3l3umkAfuL_niRgP0loGNS3PVJUR__uPS_kouCfQOewphB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237504864</pqid></control><display><type>article</type><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</creator><creatorcontrib>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</creatorcontrib><description>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp43153j</identifier><identifier>PMID: 23147799</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biological Clocks ; Channels ; Chemistry ; Computer Simulation ; Diffusion ; Dynamics ; Equipment Design ; Exact sciences and technology ; General and physical chemistry ; Inlets ; Microchannels ; Microfluidics - instrumentation ; Models, Chemical ; Propagation velocity ; Protons ; Wave fronts ; Wave propagation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2013-01, Vol.15 (1), p.154-158</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</citedby><cites>FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27158465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23147799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NABIKA, Hideki</creatorcontrib><creatorcontrib>SATO, Mami</creatorcontrib><creatorcontrib>UNOURA, Kei</creatorcontrib><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</description><subject>Biological Clocks</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Dynamics</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Inlets</subject><subject>Microchannels</subject><subject>Microfluidics - instrumentation</subject><subject>Models, Chemical</subject><subject>Propagation velocity</subject><subject>Protons</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOxSAQhonReDm68QEMGxNjUoVCobgzJ16j0YWuGw4MimlpLT0aXfjsci7q1tXMZL4ZmP9HaJeSI0qYOja56TijBXtZQZuUC5YpUvLV31yKDbQV4wshhBaUraONnFEupVKb6OvWm741zzoEqDMf7NSAxbP6CXDrUgaNN7rG7_oNcNe3nX7Sg28Dth9Bp1Y8wb7p2n7Qwcwn-lkbT2B4Bwh4eAbsQw0D1sHOq-VbOPpPiNtozek6ws4yjtDj-dnD-DK7ubu4Gp_eZIZTMWRGM1faMleTQjgBxHFKtZWlFUrmSjPrCmOAc-qIc0xyBtKkG5UW4MARYCN0sNibLnidQhyqxkcDda0DtNNY0bxkkhZKyH-gTBaEl4In9HCBJglj7MFVXe8b3X9UlFQza6pxPr6fW3Od4L3l3umkAfuL_niRgP0loGNS3PVJUR__uPS_kouCfQOewphB</recordid><startdate>20130107</startdate><enddate>20130107</enddate><creator>NABIKA, Hideki</creator><creator>SATO, Mami</creator><creator>UNOURA, Kei</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130107</creationdate><title>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</title><author>NABIKA, Hideki ; SATO, Mami ; UNOURA, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ca3f8d829b56f6e0f411ad78d69729a3df5cce441f0ff3743e7c2319a6efef0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Clocks</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Dynamics</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Inlets</topic><topic>Microchannels</topic><topic>Microfluidics - instrumentation</topic><topic>Models, Chemical</topic><topic>Propagation velocity</topic><topic>Protons</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NABIKA, Hideki</creatorcontrib><creatorcontrib>SATO, Mami</creatorcontrib><creatorcontrib>UNOURA, Kei</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NABIKA, Hideki</au><au>SATO, Mami</au><au>UNOURA, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-01-07</date><risdate>2013</risdate><volume>15</volume><issue>1</issue><spage>154</spage><epage>158</epage><pages>154-158</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The ability to control chemical wave propagation dynamics could stimulate the science and technology of artificial and biological spatiotemporal oscillating phenomena. In contrast to the conventional chemical approaches to control the wave front dynamics, here we report a physical approach to tune the propagation dynamics under the same chemical conditions. By using well-designed microchannels with different channel widths and depths, the propagation velocity was successfully controlled based on two independent effects: (i) a transition in the proton diffusion mode and (ii) the formation of a slanted wave front. Numerical analysis yielded a simple relationship between the propagation velocity and the microchannel configuration, which offers a simple and general way of controlling chemical wave propagation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23147799</pmid><doi>10.1039/c2cp43153j</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2013-01, Vol.15 (1), p.154-158 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283715967 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biological Clocks Channels Chemistry Computer Simulation Diffusion Dynamics Equipment Design Exact sciences and technology General and physical chemistry Inlets Microchannels Microfluidics - instrumentation Models, Chemical Propagation velocity Protons Wave fronts Wave propagation |
title | Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microchannel-induced%20change%20of%20chemical%20wave%20propagation%20dynamics:%20importance%20of%20ratio%20between%20the%20inlet%20and%20the%20channel%20sizes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=NABIKA,%20Hideki&rft.date=2013-01-07&rft.volume=15&rft.issue=1&rft.spage=154&rft.epage=158&rft.pages=154-158&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp43153j&rft_dat=%3Cproquest_cross%3E1237504864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237504864&rft_id=info:pmid/23147799&rfr_iscdi=true |