Statistical Complexity of Low- and High-Dimensional Systems

We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ϵ-machine (a Markov-type model of the observed time series). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atomic, molecular, and optical physics molecular, and optical physics, 2012-01, Vol.2012 (2012), p.1-6
Hauptverfasser: Ryabov, Vladimir, Nerukh, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2012
container_start_page 1
container_title Journal of atomic, molecular, and optical physics
container_volume 2012
creator Ryabov, Vladimir
Nerukh, Dmitry
description We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ϵ-machine (a Markov-type model of the observed time series). This approach has been recently demonstrated to be efficient for making a distinction between a molecular trajectory in water and noise. In this paper, we analyse the difference between chaos and noise using the Chirikov-Taylor standard map as an example in order to elucidate the basic mechanism that makes the value of complexity in deterministic systems high. In particular, we show that the value of statistical complexity is high for the case of chaos and attains zero value for the case of stochastic noise. We further study the Markov property of the data generated by the standard map to clarify the role of long-time memory in differentiating the cases of deterministic systems and stochastic motion.
doi_str_mv 10.1155/2012/589651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283715340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283715340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2051-632f8de457500ef66c14d2cafc9c1c4a33d6dfdb1784ad3c1ffbc52b462bb11e3</originalsourceid><addsrcrecordid>eNqF0EtLw0AQwPFFFCy1J89CjqLE7uwrWzxJfVQoeKiel80-7EqSrdmU2m9vSqRX5zJz-DGHP0KXgO8AOJ8SDGTK5UxwOEEjELLIZ4SK0-NN5DmapPSF-ykKWVA6QverTnchdcHoKpvHelO5n9Dts-izZdzlmW5stgif6_wx1K5JITa9W-1T5-p0gc68rpKb_O0x-nh-ep8v8uXby-v8YZkbgjnkghIvrWO84Bg7L4QBZonR3swMGKYptcJ6W0IhmbbUgPel4aRkgpQlgKNjdD383bTxe-tSp-qQjKsq3bi4TQqIpAVwynBPbwdq2phS67zatKHW7V4BVodK6lBJDZV6fTPodWis3oV_8NWAXU-c10fMJIW-5S81Tm-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283715340</pqid></control><display><type>article</type><title>Statistical Complexity of Low- and High-Dimensional Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ryabov, Vladimir ; Nerukh, Dmitry</creator><contributor>Han, Keli</contributor><creatorcontrib>Ryabov, Vladimir ; Nerukh, Dmitry ; Han, Keli</creatorcontrib><description>We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ϵ-machine (a Markov-type model of the observed time series). This approach has been recently demonstrated to be efficient for making a distinction between a molecular trajectory in water and noise. In this paper, we analyse the difference between chaos and noise using the Chirikov-Taylor standard map as an example in order to elucidate the basic mechanism that makes the value of complexity in deterministic systems high. In particular, we show that the value of statistical complexity is high for the case of chaos and attains zero value for the case of stochastic noise. We further study the Markov property of the data generated by the standard map to clarify the role of long-time memory in differentiating the cases of deterministic systems and stochastic motion.</description><identifier>ISSN: 1687-9228</identifier><identifier>EISSN: 1687-9236</identifier><identifier>DOI: 10.1155/2012/589651</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Chaos theory ; Complexity ; Dynamics ; Entropy ; Noise ; Stochasticity ; Time series</subject><ispartof>Journal of atomic, molecular, and optical physics, 2012-01, Vol.2012 (2012), p.1-6</ispartof><rights>Copyright © 2012 Vladimir Ryabov and Dmitry Nerukh.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2051-632f8de457500ef66c14d2cafc9c1c4a33d6dfdb1784ad3c1ffbc52b462bb11e3</citedby><cites>FETCH-LOGICAL-c2051-632f8de457500ef66c14d2cafc9c1c4a33d6dfdb1784ad3c1ffbc52b462bb11e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Han, Keli</contributor><creatorcontrib>Ryabov, Vladimir</creatorcontrib><creatorcontrib>Nerukh, Dmitry</creatorcontrib><title>Statistical Complexity of Low- and High-Dimensional Systems</title><title>Journal of atomic, molecular, and optical physics</title><description>We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ϵ-machine (a Markov-type model of the observed time series). This approach has been recently demonstrated to be efficient for making a distinction between a molecular trajectory in water and noise. In this paper, we analyse the difference between chaos and noise using the Chirikov-Taylor standard map as an example in order to elucidate the basic mechanism that makes the value of complexity in deterministic systems high. In particular, we show that the value of statistical complexity is high for the case of chaos and attains zero value for the case of stochastic noise. We further study the Markov property of the data generated by the standard map to clarify the role of long-time memory in differentiating the cases of deterministic systems and stochastic motion.</description><subject>Chaos theory</subject><subject>Complexity</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Noise</subject><subject>Stochasticity</subject><subject>Time series</subject><issn>1687-9228</issn><issn>1687-9236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0EtLw0AQwPFFFCy1J89CjqLE7uwrWzxJfVQoeKiel80-7EqSrdmU2m9vSqRX5zJz-DGHP0KXgO8AOJ8SDGTK5UxwOEEjELLIZ4SK0-NN5DmapPSF-ykKWVA6QverTnchdcHoKpvHelO5n9Dts-izZdzlmW5stgif6_wx1K5JITa9W-1T5-p0gc68rpKb_O0x-nh-ep8v8uXby-v8YZkbgjnkghIvrWO84Bg7L4QBZonR3swMGKYptcJ6W0IhmbbUgPel4aRkgpQlgKNjdD383bTxe-tSp-qQjKsq3bi4TQqIpAVwynBPbwdq2phS67zatKHW7V4BVodK6lBJDZV6fTPodWis3oV_8NWAXU-c10fMJIW-5S81Tm-O</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ryabov, Vladimir</creator><creator>Nerukh, Dmitry</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120101</creationdate><title>Statistical Complexity of Low- and High-Dimensional Systems</title><author>Ryabov, Vladimir ; Nerukh, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2051-632f8de457500ef66c14d2cafc9c1c4a33d6dfdb1784ad3c1ffbc52b462bb11e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chaos theory</topic><topic>Complexity</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Noise</topic><topic>Stochasticity</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryabov, Vladimir</creatorcontrib><creatorcontrib>Nerukh, Dmitry</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryabov, Vladimir</au><au>Nerukh, Dmitry</au><au>Han, Keli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Complexity of Low- and High-Dimensional Systems</atitle><jtitle>Journal of atomic, molecular, and optical physics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-9228</issn><eissn>1687-9236</eissn><abstract>We suggest a new method for the analysis of experimental time series that can distinguish high-dimensional dynamics from stochastic motion. It is based on the idea of statistical complexity, that is, the Shannon entropy of the so-called ϵ-machine (a Markov-type model of the observed time series). This approach has been recently demonstrated to be efficient for making a distinction between a molecular trajectory in water and noise. In this paper, we analyse the difference between chaos and noise using the Chirikov-Taylor standard map as an example in order to elucidate the basic mechanism that makes the value of complexity in deterministic systems high. In particular, we show that the value of statistical complexity is high for the case of chaos and attains zero value for the case of stochastic noise. We further study the Markov property of the data generated by the standard map to clarify the role of long-time memory in differentiating the cases of deterministic systems and stochastic motion.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2012/589651</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9228
ispartof Journal of atomic, molecular, and optical physics, 2012-01, Vol.2012 (2012), p.1-6
issn 1687-9228
1687-9236
language eng
recordid cdi_proquest_miscellaneous_1283715340
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chaos theory
Complexity
Dynamics
Entropy
Noise
Stochasticity
Time series
title Statistical Complexity of Low- and High-Dimensional Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Complexity%20of%20Low-%20and%20High-Dimensional%20Systems&rft.jtitle=Journal%20of%20atomic,%20molecular,%20and%20optical%20physics&rft.au=Ryabov,%20Vladimir&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-9228&rft.eissn=1687-9236&rft_id=info:doi/10.1155/2012/589651&rft_dat=%3Cproquest_cross%3E1283715340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283715340&rft_id=info:pmid/&rfr_iscdi=true