On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )

We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2012-01, Vol.2012
Hauptverfasser: Stevic, Stevo, Diblík, Josef, Iricanin, Bratislav, Smarda, Zdenek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Abstract and applied analysis
container_volume 2012
creator Stevic, Stevo
Diblík, Josef
Iricanin, Bratislav
Smarda, Zdenek
description We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.
doi_str_mv 10.1155/2012/108047
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283715014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283715014</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-4326446467a6aaf0221b6f456a63b5388eb6a108e73dda76678af5e5e7fea7d03</originalsourceid><addsrcrecordid>eNpdjktLw0AUhQdRsFZX_oGAm0qJuTdz5-FCQWp9QKGb7sOkuYOpcdJmGujPN0XduDofH4fDEeIa4Q5RqSwHzDMEC2ROxAi1NSkQ3J8ODFalUhp1Li5i3ACANEQj8bgMyf6Dk-fae-44rDmZ73q3r9uQHMIUk4fDEdLPJJscYzBuWv6520tx5l0T-eo3x2L1Ml_N3tLF8vV99rRItxopJZlrIk3aOO2chzzHUntS2mlZKmktl9oND9nIqnJGa2OdV6zYeHamAjkWk5_Zbdfueo774quOa24aF7jtY4G5lQYVIA3Vm3_VTdt3YThXIEgryZCy8htQnFMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038347458</pqid></control><display><type>article</type><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</creator><creatorcontrib>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</creatorcontrib><description>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2012/108047</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Asymptotic properties ; Behavior ; Civil engineering ; Difference equations ; Exact solutions ; Mathematical analysis ; Real numbers ; Studies</subject><ispartof>Abstract and applied analysis, 2012-01, Vol.2012</ispartof><rights>Copyright © 2012 Stevo Stevic et al. Stevo Stevic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Stevic, Stevo</creatorcontrib><creatorcontrib>Diblík, Josef</creatorcontrib><creatorcontrib>Iricanin, Bratislav</creatorcontrib><creatorcontrib>Smarda, Zdenek</creatorcontrib><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><title>Abstract and applied analysis</title><description>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</description><subject>Asymptotic properties</subject><subject>Behavior</subject><subject>Civil engineering</subject><subject>Difference equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Real numbers</subject><subject>Studies</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjktLw0AUhQdRsFZX_oGAm0qJuTdz5-FCQWp9QKGb7sOkuYOpcdJmGujPN0XduDofH4fDEeIa4Q5RqSwHzDMEC2ROxAi1NSkQ3J8ODFalUhp1Li5i3ACANEQj8bgMyf6Dk-fae-44rDmZ73q3r9uQHMIUk4fDEdLPJJscYzBuWv6520tx5l0T-eo3x2L1Ml_N3tLF8vV99rRItxopJZlrIk3aOO2chzzHUntS2mlZKmktl9oND9nIqnJGa2OdV6zYeHamAjkWk5_Zbdfueo774quOa24aF7jtY4G5lQYVIA3Vm3_VTdt3YThXIEgryZCy8htQnFMH</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Stevic, Stevo</creator><creator>Diblík, Josef</creator><creator>Iricanin, Bratislav</creator><creator>Smarda, Zdenek</creator><general>Hindawi Limited</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><author>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-4326446467a6aaf0221b6f456a63b5388eb6a108e73dda76678af5e5e7fea7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Behavior</topic><topic>Civil engineering</topic><topic>Difference equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Real numbers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevic, Stevo</creatorcontrib><creatorcontrib>Diblík, Josef</creatorcontrib><creatorcontrib>Iricanin, Bratislav</creatorcontrib><creatorcontrib>Smarda, Zdenek</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevic, Stevo</au><au>Diblík, Josef</au><au>Iricanin, Bratislav</au><au>Smarda, Zdenek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</atitle><jtitle>Abstract and applied analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2012/108047</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and applied analysis, 2012-01, Vol.2012
issn 1085-3375
1687-0409
language eng
recordid cdi_proquest_miscellaneous_1283715014
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Asymptotic properties
Behavior
Civil engineering
Difference equations
Exact solutions
Mathematical analysis
Real numbers
Studies
title On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Difference%20Equation%20xn+1%20=xn%20xn-k%20/(xn-k+1%20a+bxn%20xn-k%20)&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=Stevic,%20Stevo&rft.date=2012-01-01&rft.volume=2012&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2012/108047&rft_dat=%3Cproquest%3E1283715014%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038347458&rft_id=info:pmid/&rfr_iscdi=true