On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )
We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [su...
Gespeichert in:
Veröffentlicht in: | Abstract and applied analysis 2012-01, Vol.2012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Abstract and applied analysis |
container_volume | 2012 |
creator | Stevic, Stevo Diblík, Josef Iricanin, Bratislav Smarda, Zdenek |
description | We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation. |
doi_str_mv | 10.1155/2012/108047 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283715014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283715014</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-4326446467a6aaf0221b6f456a63b5388eb6a108e73dda76678af5e5e7fea7d03</originalsourceid><addsrcrecordid>eNpdjktLw0AUhQdRsFZX_oGAm0qJuTdz5-FCQWp9QKGb7sOkuYOpcdJmGujPN0XduDofH4fDEeIa4Q5RqSwHzDMEC2ROxAi1NSkQ3J8ODFalUhp1Li5i3ACANEQj8bgMyf6Dk-fae-44rDmZ73q3r9uQHMIUk4fDEdLPJJscYzBuWv6520tx5l0T-eo3x2L1Ml_N3tLF8vV99rRItxopJZlrIk3aOO2chzzHUntS2mlZKmktl9oND9nIqnJGa2OdV6zYeHamAjkWk5_Zbdfueo774quOa24aF7jtY4G5lQYVIA3Vm3_VTdt3YThXIEgryZCy8htQnFMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038347458</pqid></control><display><type>article</type><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</creator><creatorcontrib>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</creatorcontrib><description>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2012/108047</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Asymptotic properties ; Behavior ; Civil engineering ; Difference equations ; Exact solutions ; Mathematical analysis ; Real numbers ; Studies</subject><ispartof>Abstract and applied analysis, 2012-01, Vol.2012</ispartof><rights>Copyright © 2012 Stevo Stevic et al. Stevo Stevic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Stevic, Stevo</creatorcontrib><creatorcontrib>Diblík, Josef</creatorcontrib><creatorcontrib>Iricanin, Bratislav</creatorcontrib><creatorcontrib>Smarda, Zdenek</creatorcontrib><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><title>Abstract and applied analysis</title><description>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</description><subject>Asymptotic properties</subject><subject>Behavior</subject><subject>Civil engineering</subject><subject>Difference equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Real numbers</subject><subject>Studies</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjktLw0AUhQdRsFZX_oGAm0qJuTdz5-FCQWp9QKGb7sOkuYOpcdJmGujPN0XduDofH4fDEeIa4Q5RqSwHzDMEC2ROxAi1NSkQ3J8ODFalUhp1Li5i3ACANEQj8bgMyf6Dk-fae-44rDmZ73q3r9uQHMIUk4fDEdLPJJscYzBuWv6520tx5l0T-eo3x2L1Ml_N3tLF8vV99rRItxopJZlrIk3aOO2chzzHUntS2mlZKmktl9oND9nIqnJGa2OdV6zYeHamAjkWk5_Zbdfueo774quOa24aF7jtY4G5lQYVIA3Vm3_VTdt3YThXIEgryZCy8htQnFMH</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Stevic, Stevo</creator><creator>Diblík, Josef</creator><creator>Iricanin, Bratislav</creator><creator>Smarda, Zdenek</creator><general>Hindawi Limited</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</title><author>Stevic, Stevo ; Diblík, Josef ; Iricanin, Bratislav ; Smarda, Zdenek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-4326446467a6aaf0221b6f456a63b5388eb6a108e73dda76678af5e5e7fea7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Behavior</topic><topic>Civil engineering</topic><topic>Difference equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Real numbers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevic, Stevo</creatorcontrib><creatorcontrib>Diblík, Josef</creatorcontrib><creatorcontrib>Iricanin, Bratislav</creatorcontrib><creatorcontrib>Smarda, Zdenek</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevic, Stevo</au><au>Diblík, Josef</au><au>Iricanin, Bratislav</au><au>Smarda, Zdenek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k )</atitle><jtitle>Abstract and applied analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We show that the difference equation [subscript]xn+1[/subscript] =[subscript]xn[/subscript] [subscript]xn-k[/subscript] /[subscript]xn-k+1[/subscript] (a+b[subscript]xn[/subscript] [subscript]xn-k[/subscript] ),n∈[subscript]...0[/subscript] , where k∈... , the parameters a , b and initial values [subscript]x-i[/subscript] , i=0,k... are real numbers, can be solved in closed form considerably extending the results in the literature. By using obtained formulae, we investigate asymptotic behavior of well-defined solutions of the equation.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2012/108047</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and applied analysis, 2012-01, Vol.2012 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283715014 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Asymptotic properties Behavior Civil engineering Difference equations Exact solutions Mathematical analysis Real numbers Studies |
title | On the Difference Equation xn+1 =xn xn-k /(xn-k+1 a+bxn xn-k ) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Difference%20Equation%20xn+1%20=xn%20xn-k%20/(xn-k+1%20a+bxn%20xn-k%20)&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=Stevic,%20Stevo&rft.date=2012-01-01&rft.volume=2012&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2012/108047&rft_dat=%3Cproquest%3E1283715014%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038347458&rft_id=info:pmid/&rfr_iscdi=true |