Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes
The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All material...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2010-07, Vol.50 (7), p.1424-1432 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1432 |
---|---|
container_issue | 7 |
container_start_page | 1424 |
container_title | Polymer engineering and science |
container_volume | 50 |
creator | McGrady, Christopher D. Seay, Christopher W. Mazahir, Syed M. Baird, Donald G. |
description | The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time–strain separation beyond some characteristic time, τk. The presence of LCB is observed to increase the value of τk relative to the linear resin. The behavior of the relaxation modulus at times shorter than τk is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.21678 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283700036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A231546728</galeid><sourcerecordid>A231546728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5738-b4ef4269abee3609814cbdbd23092e1da1de5c5e3759f570918fc06b92e633a13</originalsourceid><addsrcrecordid>eNp1klFv0zAUhSMEEqXwwD-IQEhDIp0dJ07yOI0yJsaAMeDRcpybxFvqBN-Urf-e27VMFBVFciz7O0f28QmC55zNOGPx4QBuFnOZ5Q-CCU-TPIqlSB4GE8ZEHIk8zx8HTxCvGLEiLSbB9byuwYxhX4c4aI8Qdr1rItNq68LSa2da65qwd-HYQogjDBGO_m4TWv3L9n4t1SGCt4Dr-Q10XVRBbR1U4dB3KxjbVQcO8GnwqNYdwrPtfxp8eze_PH4fnX06OT0-OotMmok8KhOok1gWugQQkhU5T0xZlVUsWBEDrzSvIDUpiCwt6jRjBc9rw2RJm1IIzcU0ONj4Dr7_uQQc1cKioWNpB_0SFY9zkVECQhL64h_0ql96R6dTaZHLhCe8IOjlBmp0B8q6uqcEzNpTHcWCUpYZOU6DaA_V0MW9pkwpEFre4Wd7ePoqWFizV_B6R0DMCLdjo5eI6vTrxS775i-2XCK9BtKAtmlH3Ej2WRvfI3qo1eDtQvuV4kyte6WoV-quV8S-2kam0eiuXnfE4r0gjouE84QRd7jhbugeq_8bqs_z8z_O2wQt9ez2XqH9tZIZvbb6cX6iPlzK7MvF97fqo_gN1rLnzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>598641419</pqid></control><display><type>article</type><title>Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes</title><source>Wiley Journals</source><creator>McGrady, Christopher D. ; Seay, Christopher W. ; Mazahir, Syed M. ; Baird, Donald G.</creator><creatorcontrib>McGrady, Christopher D. ; Seay, Christopher W. ; Mazahir, Syed M. ; Baird, Donald G.</creatorcontrib><description>The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time–strain separation beyond some characteristic time, τk. The presence of LCB is observed to increase the value of τk relative to the linear resin. The behavior of the relaxation modulus at times shorter than τk is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21678</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Branching processes ; Carbon ; Damping ; Exact sciences and technology ; Mathematical analysis ; Mechanical properties ; Methods ; Organic polymers ; Physicochemistry of polymers ; Polyethylene ; Polyethylenes ; Polymers ; Properties and characterization ; Resins ; Rheology and viscoelasticity ; Smoothness ; Strain ; Stress analysis (Engineering) ; Stress relaxation ; Stress-strain curves ; Testing</subject><ispartof>Polymer engineering and science, 2010-07, Vol.50 (7), p.1424-1432</ispartof><rights>Copyright © 2010 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5738-b4ef4269abee3609814cbdbd23092e1da1de5c5e3759f570918fc06b92e633a13</citedby><cites>FETCH-LOGICAL-c5738-b4ef4269abee3609814cbdbd23092e1da1de5c5e3759f570918fc06b92e633a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22941140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McGrady, Christopher D.</creatorcontrib><creatorcontrib>Seay, Christopher W.</creatorcontrib><creatorcontrib>Mazahir, Syed M.</creatorcontrib><creatorcontrib>Baird, Donald G.</creatorcontrib><title>Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time–strain separation beyond some characteristic time, τk. The presence of LCB is observed to increase the value of τk relative to the linear resin. The behavior of the relaxation modulus at times shorter than τk is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Branching processes</subject><subject>Carbon</subject><subject>Damping</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymers</subject><subject>Properties and characterization</subject><subject>Resins</subject><subject>Rheology and viscoelasticity</subject><subject>Smoothness</subject><subject>Strain</subject><subject>Stress analysis (Engineering)</subject><subject>Stress relaxation</subject><subject>Stress-strain curves</subject><subject>Testing</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1klFv0zAUhSMEEqXwwD-IQEhDIp0dJ07yOI0yJsaAMeDRcpybxFvqBN-Urf-e27VMFBVFciz7O0f28QmC55zNOGPx4QBuFnOZ5Q-CCU-TPIqlSB4GE8ZEHIk8zx8HTxCvGLEiLSbB9byuwYxhX4c4aI8Qdr1rItNq68LSa2da65qwd-HYQogjDBGO_m4TWv3L9n4t1SGCt4Dr-Q10XVRBbR1U4dB3KxjbVQcO8GnwqNYdwrPtfxp8eze_PH4fnX06OT0-OotMmok8KhOok1gWugQQkhU5T0xZlVUsWBEDrzSvIDUpiCwt6jRjBc9rw2RJm1IIzcU0ONj4Dr7_uQQc1cKioWNpB_0SFY9zkVECQhL64h_0ql96R6dTaZHLhCe8IOjlBmp0B8q6uqcEzNpTHcWCUpYZOU6DaA_V0MW9pkwpEFre4Wd7ePoqWFizV_B6R0DMCLdjo5eI6vTrxS775i-2XCK9BtKAtmlH3Ej2WRvfI3qo1eDtQvuV4kyte6WoV-quV8S-2kam0eiuXnfE4r0gjouE84QRd7jhbugeq_8bqs_z8z_O2wQt9ez2XqH9tZIZvbb6cX6iPlzK7MvF97fqo_gN1rLnzQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>McGrady, Christopher D.</creator><creator>Seay, Christopher W.</creator><creator>Mazahir, Syed M.</creator><creator>Baird, Donald G.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201007</creationdate><title>Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes</title><author>McGrady, Christopher D. ; Seay, Christopher W. ; Mazahir, Syed M. ; Baird, Donald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5738-b4ef4269abee3609814cbdbd23092e1da1de5c5e3759f570918fc06b92e633a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Branching processes</topic><topic>Carbon</topic><topic>Damping</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymers</topic><topic>Properties and characterization</topic><topic>Resins</topic><topic>Rheology and viscoelasticity</topic><topic>Smoothness</topic><topic>Strain</topic><topic>Stress analysis (Engineering)</topic><topic>Stress relaxation</topic><topic>Stress-strain curves</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGrady, Christopher D.</creatorcontrib><creatorcontrib>Seay, Christopher W.</creatorcontrib><creatorcontrib>Mazahir, Syed M.</creatorcontrib><creatorcontrib>Baird, Donald G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrady, Christopher D.</au><au>Seay, Christopher W.</au><au>Mazahir, Syed M.</au><au>Baird, Donald G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2010-07</date><risdate>2010</risdate><volume>50</volume><issue>7</issue><spage>1424</spage><epage>1432</epage><pages>1424-1432</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The effect of sparse long chain branching, LCB, on the shear step‐strain relaxation modulus is analyzed using a series of eight high‐density polyethylene (HDPE) resins. Strains of 1 to 1250% are imposed on materials with LCB content ranging from zero to 3.33 LCB per 10,000 carbon atoms. All materials are observed to obey time–strain separation beyond some characteristic time, τk. The presence of LCB is observed to increase the value of τk relative to the linear resin. The behavior of the relaxation modulus at times shorter than τk is investigated by an analysis of the enhancement seen in the linear relaxation modulus, G0(t), as a function of strain and LCB content. This enhancement is seen to (1) increase with increasing strain in all resins, (2) be significantly larger in the sparsely branched HDPE resins relative to the linear HDPE resin, and (3) increase in magnitude with increasing LCB content. The shape and smoothness of the damping function is also investigated. The finite rise time to impose the desired strain is compared to the Rouse relaxation time of linear HDPE resins studied. Sparse LCB is found to increase the magnitude of the relaxation modulus at short times relative to the linear resin. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21678</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2010-07, Vol.50 (7), p.1424-1432 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283700036 |
source | Wiley Journals |
subjects | Applied sciences Branching processes Carbon Damping Exact sciences and technology Mathematical analysis Mechanical properties Methods Organic polymers Physicochemistry of polymers Polyethylene Polyethylenes Polymers Properties and characterization Resins Rheology and viscoelasticity Smoothness Strain Stress analysis (Engineering) Stress relaxation Stress-strain curves Testing |
title | Effect of sparse long-chain branching on the step-strain behavior of a series of well-defined polyethylenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20sparse%20long-chain%20branching%20on%20the%20step-strain%20behavior%20of%20a%20series%20of%20well-defined%20polyethylenes&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=McGrady,%20Christopher%20D.&rft.date=2010-07&rft.volume=50&rft.issue=7&rft.spage=1424&rft.epage=1432&rft.pages=1424-1432&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21678&rft_dat=%3Cgale_proqu%3EA231546728%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=598641419&rft_id=info:pmid/&rft_galeid=A231546728&rfr_iscdi=true |