Static analysis of two-dimensional elastic structures using global collocation

Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by repla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2010-04, Vol.80 (4), p.389-400
Hauptverfasser: Provatidis, C. G., Ioannou, K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 4
container_start_page 389
container_title Archive of applied mechanics (1991)
container_volume 80
creator Provatidis, C. G.
Ioannou, K. S.
description Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.
doi_str_mv 10.1007/s00419-009-0317-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283692320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283692320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOI7-AHdduonm1bRZyuALBl2o65CmydAh04y5LdJ_b0pdi4vLgXu_cxb3IHRNyS0lpLoDQgRVmJA8nFZ4OkErKjjDRNb0FK2I4grTkvNzdAGwJxkvGVmh1_fBDJ0tTG_CBB0U0RfDd8Rtd3A9dDGvCxcMzAwMabTDmBwUI3T9rtiF2OS7jSFEm2Nif4nOvAngrn51jT4fHz42z3j79vSyud9iy-tqwE4oJYT3QomKtqJpTSlq542shOSkbVhZSy5MY4SsnSLMWtZKVbatpNKU3vM1ullyjyl-jQ4GfejAuhBM7-IImrKaS8U4I_9Da15l-R9KSzWjdEFtigDJeX1M3cGkSVOi50b00ojOjei5ET1lD1s8kNl-55LexzHlD8Mfph_zy47i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283681598</pqid></control><display><type>article</type><title>Static analysis of two-dimensional elastic structures using global collocation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Provatidis, C. G. ; Ioannou, K. S.</creator><creatorcontrib>Provatidis, C. G. ; Ioannou, K. S.</creatorcontrib><description>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-009-0317-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Boundaries ; Classical Mechanics ; Collocation ; Convergence ; Density ; Elastodynamics ; Engineering ; Finite element method ; Mathematical analysis ; Original ; Theoretical and Applied Mechanics ; Two dimensional</subject><ispartof>Archive of applied mechanics (1991), 2010-04, Vol.80 (4), p.389-400</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</citedby><cites>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-009-0317-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-009-0317-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Provatidis, C. G.</creatorcontrib><creatorcontrib>Ioannou, K. S.</creatorcontrib><title>Static analysis of two-dimensional elastic structures using global collocation</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</description><subject>Boundaries</subject><subject>Classical Mechanics</subject><subject>Collocation</subject><subject>Convergence</subject><subject>Density</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Original</subject><subject>Theoretical and Applied Mechanics</subject><subject>Two dimensional</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOI7-AHdduonm1bRZyuALBl2o65CmydAh04y5LdJ_b0pdi4vLgXu_cxb3IHRNyS0lpLoDQgRVmJA8nFZ4OkErKjjDRNb0FK2I4grTkvNzdAGwJxkvGVmh1_fBDJ0tTG_CBB0U0RfDd8Rtd3A9dDGvCxcMzAwMabTDmBwUI3T9rtiF2OS7jSFEm2Nif4nOvAngrn51jT4fHz42z3j79vSyud9iy-tqwE4oJYT3QomKtqJpTSlq542shOSkbVhZSy5MY4SsnSLMWtZKVbatpNKU3vM1ullyjyl-jQ4GfejAuhBM7-IImrKaS8U4I_9Da15l-R9KSzWjdEFtigDJeX1M3cGkSVOi50b00ojOjei5ET1lD1s8kNl-55LexzHlD8Mfph_zy47i</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Provatidis, C. G.</creator><creator>Ioannou, K. S.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100401</creationdate><title>Static analysis of two-dimensional elastic structures using global collocation</title><author>Provatidis, C. G. ; Ioannou, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundaries</topic><topic>Classical Mechanics</topic><topic>Collocation</topic><topic>Convergence</topic><topic>Density</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Original</topic><topic>Theoretical and Applied Mechanics</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Provatidis, C. G.</creatorcontrib><creatorcontrib>Ioannou, K. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Provatidis, C. G.</au><au>Ioannou, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static analysis of two-dimensional elastic structures using global collocation</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>80</volume><issue>4</issue><spage>389</spage><epage>400</epage><pages>389-400</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00419-009-0317-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2010-04, Vol.80 (4), p.389-400
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_miscellaneous_1283692320
source SpringerLink Journals - AutoHoldings
subjects Boundaries
Classical Mechanics
Collocation
Convergence
Density
Elastodynamics
Engineering
Finite element method
Mathematical analysis
Original
Theoretical and Applied Mechanics
Two dimensional
title Static analysis of two-dimensional elastic structures using global collocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20analysis%20of%20two-dimensional%20elastic%20structures%20using%20global%20collocation&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Provatidis,%20C.%20G.&rft.date=2010-04-01&rft.volume=80&rft.issue=4&rft.spage=389&rft.epage=400&rft.pages=389-400&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-009-0317-y&rft_dat=%3Cproquest_cross%3E1283692320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283681598&rft_id=info:pmid/&rfr_iscdi=true