Static analysis of two-dimensional elastic structures using global collocation
Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by repla...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2010-04, Vol.80 (4), p.389-400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 4 |
container_start_page | 389 |
container_title | Archive of applied mechanics (1991) |
container_volume | 80 |
creator | Provatidis, C. G. Ioannou, K. S. |
description | Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density. |
doi_str_mv | 10.1007/s00419-009-0317-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283692320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283692320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOI7-AHdduonm1bRZyuALBl2o65CmydAh04y5LdJ_b0pdi4vLgXu_cxb3IHRNyS0lpLoDQgRVmJA8nFZ4OkErKjjDRNb0FK2I4grTkvNzdAGwJxkvGVmh1_fBDJ0tTG_CBB0U0RfDd8Rtd3A9dDGvCxcMzAwMabTDmBwUI3T9rtiF2OS7jSFEm2Nif4nOvAngrn51jT4fHz42z3j79vSyud9iy-tqwE4oJYT3QomKtqJpTSlq542shOSkbVhZSy5MY4SsnSLMWtZKVbatpNKU3vM1ullyjyl-jQ4GfejAuhBM7-IImrKaS8U4I_9Da15l-R9KSzWjdEFtigDJeX1M3cGkSVOi50b00ojOjei5ET1lD1s8kNl-55LexzHlD8Mfph_zy47i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283681598</pqid></control><display><type>article</type><title>Static analysis of two-dimensional elastic structures using global collocation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Provatidis, C. G. ; Ioannou, K. S.</creator><creatorcontrib>Provatidis, C. G. ; Ioannou, K. S.</creatorcontrib><description>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-009-0317-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Boundaries ; Classical Mechanics ; Collocation ; Convergence ; Density ; Elastodynamics ; Engineering ; Finite element method ; Mathematical analysis ; Original ; Theoretical and Applied Mechanics ; Two dimensional</subject><ispartof>Archive of applied mechanics (1991), 2010-04, Vol.80 (4), p.389-400</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</citedby><cites>FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-009-0317-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-009-0317-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Provatidis, C. G.</creatorcontrib><creatorcontrib>Ioannou, K. S.</creatorcontrib><title>Static analysis of two-dimensional elastic structures using global collocation</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</description><subject>Boundaries</subject><subject>Classical Mechanics</subject><subject>Collocation</subject><subject>Convergence</subject><subject>Density</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Original</subject><subject>Theoretical and Applied Mechanics</subject><subject>Two dimensional</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOI7-AHdduonm1bRZyuALBl2o65CmydAh04y5LdJ_b0pdi4vLgXu_cxb3IHRNyS0lpLoDQgRVmJA8nFZ4OkErKjjDRNb0FK2I4grTkvNzdAGwJxkvGVmh1_fBDJ0tTG_CBB0U0RfDd8Rtd3A9dDGvCxcMzAwMabTDmBwUI3T9rtiF2OS7jSFEm2Nif4nOvAngrn51jT4fHz42z3j79vSyud9iy-tqwE4oJYT3QomKtqJpTSlq542shOSkbVhZSy5MY4SsnSLMWtZKVbatpNKU3vM1ullyjyl-jQ4GfejAuhBM7-IImrKaS8U4I_9Da15l-R9KSzWjdEFtigDJeX1M3cGkSVOi50b00ojOjei5ET1lD1s8kNl-55LexzHlD8Mfph_zy47i</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Provatidis, C. G.</creator><creator>Ioannou, K. S.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100401</creationdate><title>Static analysis of two-dimensional elastic structures using global collocation</title><author>Provatidis, C. G. ; Ioannou, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e49944ff49471d4bda548efa674630db258634aba468e902cc2d695dd616a5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundaries</topic><topic>Classical Mechanics</topic><topic>Collocation</topic><topic>Convergence</topic><topic>Density</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Original</topic><topic>Theoretical and Applied Mechanics</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Provatidis, C. G.</creatorcontrib><creatorcontrib>Ioannou, K. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Provatidis, C. G.</au><au>Ioannou, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static analysis of two-dimensional elastic structures using global collocation</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>80</volume><issue>4</issue><spage>389</spage><epage>400</epage><pages>389-400</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Based on previous findings concerning the numerical solution of one-dimensional elastodynamical problems [Provatidis in Arch Appl Mech 78(4):241–250, 2008] this paper extends the methodology to the static analysis of two-dimensional problems in quadrilateral domains. This target is achieved by replacing the Galerkin/Ritz procedure involved in Lagrangian (or Gordon–Coons) type finite elements by a global collocation scheme. In brief, the boundary conditions are fulfilled at all boundary nodes, while the governing equation is fulfilled at internal points. The theory is supported by four test cases concerning rectangular and curvilinear structures under plane-stress or plane-strain conditions, where the convergence rate is successfully compared with that of conventional bilinear finite elements with the same mesh density.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00419-009-0317-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2010-04, Vol.80 (4), p.389-400 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283692320 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundaries Classical Mechanics Collocation Convergence Density Elastodynamics Engineering Finite element method Mathematical analysis Original Theoretical and Applied Mechanics Two dimensional |
title | Static analysis of two-dimensional elastic structures using global collocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20analysis%20of%20two-dimensional%20elastic%20structures%20using%20global%20collocation&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Provatidis,%20C.%20G.&rft.date=2010-04-01&rft.volume=80&rft.issue=4&rft.spage=389&rft.epage=400&rft.pages=389-400&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-009-0317-y&rft_dat=%3Cproquest_cross%3E1283692320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283681598&rft_id=info:pmid/&rfr_iscdi=true |