Corrugated neat thin-film conjugated polymer distributed-feedback lasers

Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2002-04, Vol.74 (4-5), p.333-342
Hauptverfasser: HOLZER, W, PENZKOFER, A, PERTSCH, T, DANZ, N, BRÄUER, A, KLEY, E. B, TILLMANN, H, BADER, C, HÖRHOLD, H.-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 4-5
container_start_page 333
container_title Applied physics. B, Lasers and optics
container_volume 74
creator HOLZER, W
PENZKOFER, A
PERTSCH, T
DANZ, N
BRÄUER, A
KLEY, E. B
TILLMANN, H
BADER, C
HÖRHOLD, H.-H
description Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4--9 *mJcm) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to *D*lDFB#~0.07 nm) is considerably narrower than that of the travelling wave laser (*D*lTWL#~14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities.
doi_str_mv 10.1007/s003400200821
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283683357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283683357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6188345260f8ccce1f170d866d540b2f4e0d31e3d2b6080c82a154d1e18e48e43</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouK4evfcieInOJGmaPcqirrDgRc8lTSbatR9r0h72v7eyBXF4MDDze-_wGLtGuEOA4j4BSAUgAIzAE7ZAJQUHrVanbAErpbnAAs_ZRUo7mEYbs2CbdR_j-GEH8llHdsiGz7rjoW7azPXdbv7s--bQUsx8nYZYV-N044HIV9Z9ZY1NFNMlOwu2SXQ17yV7f3p8W2_49vX5Zf2w5U5qNXCNxkiVCw3BOOcIAxbgjdY-V1CJoAi8RJJeVBoMOCMs5sojoSE1SS7Z7TF3H_vvkdJQtnVy1DS2o35MJQojtZEyLyaUH1EX-5QihXIf69bGQ4lQ_jZW_mts4m_maJucbUK0navTn0nmWigs5A_qdmo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283683357</pqid></control><display><type>article</type><title>Corrugated neat thin-film conjugated polymer distributed-feedback lasers</title><source>Springer Nature - Complete Springer Journals</source><creator>HOLZER, W ; PENZKOFER, A ; PERTSCH, T ; DANZ, N ; BRÄUER, A ; KLEY, E. B ; TILLMANN, H ; BADER, C ; HÖRHOLD, H.-H</creator><creatorcontrib>HOLZER, W ; PENZKOFER, A ; PERTSCH, T ; DANZ, N ; BRÄUER, A ; KLEY, E. B ; TILLMANN, H ; BADER, C ; HÖRHOLD, H.-H</creatorcontrib><description>Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4--9 *mJcm) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to *D*lDFB#~0.07 nm) is considerably narrower than that of the travelling wave laser (*D*lTWL#~14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s003400200821</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Diffraction gratings ; Doped-insulator lasers and other solid state lasers ; Emission analysis ; Energy density ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gratings (spectra) ; Lasers ; Optical materials ; Optics ; Physics ; Polymers and organics ; Pumps ; Thresholds ; Traveling waves</subject><ispartof>Applied physics. B, Lasers and optics, 2002-04, Vol.74 (4-5), p.333-342</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6188345260f8ccce1f170d866d540b2f4e0d31e3d2b6080c82a154d1e18e48e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13562417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HOLZER, W</creatorcontrib><creatorcontrib>PENZKOFER, A</creatorcontrib><creatorcontrib>PERTSCH, T</creatorcontrib><creatorcontrib>DANZ, N</creatorcontrib><creatorcontrib>BRÄUER, A</creatorcontrib><creatorcontrib>KLEY, E. B</creatorcontrib><creatorcontrib>TILLMANN, H</creatorcontrib><creatorcontrib>BADER, C</creatorcontrib><creatorcontrib>HÖRHOLD, H.-H</creatorcontrib><title>Corrugated neat thin-film conjugated polymer distributed-feedback lasers</title><title>Applied physics. B, Lasers and optics</title><description>Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4--9 *mJcm) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to *D*lDFB#~0.07 nm) is considerably narrower than that of the travelling wave laser (*D*lTWL#~14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities.</description><subject>Diffraction gratings</subject><subject>Doped-insulator lasers and other solid state lasers</subject><subject>Emission analysis</subject><subject>Energy density</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gratings (spectra)</subject><subject>Lasers</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Physics</subject><subject>Polymers and organics</subject><subject>Pumps</subject><subject>Thresholds</subject><subject>Traveling waves</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouK4evfcieInOJGmaPcqirrDgRc8lTSbatR9r0h72v7eyBXF4MDDze-_wGLtGuEOA4j4BSAUgAIzAE7ZAJQUHrVanbAErpbnAAs_ZRUo7mEYbs2CbdR_j-GEH8llHdsiGz7rjoW7azPXdbv7s--bQUsx8nYZYV-N044HIV9Z9ZY1NFNMlOwu2SXQ17yV7f3p8W2_49vX5Zf2w5U5qNXCNxkiVCw3BOOcIAxbgjdY-V1CJoAi8RJJeVBoMOCMs5sojoSE1SS7Z7TF3H_vvkdJQtnVy1DS2o35MJQojtZEyLyaUH1EX-5QihXIf69bGQ4lQ_jZW_mts4m_maJucbUK0navTn0nmWigs5A_qdmo1</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>HOLZER, W</creator><creator>PENZKOFER, A</creator><creator>PERTSCH, T</creator><creator>DANZ, N</creator><creator>BRÄUER, A</creator><creator>KLEY, E. B</creator><creator>TILLMANN, H</creator><creator>BADER, C</creator><creator>HÖRHOLD, H.-H</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020401</creationdate><title>Corrugated neat thin-film conjugated polymer distributed-feedback lasers</title><author>HOLZER, W ; PENZKOFER, A ; PERTSCH, T ; DANZ, N ; BRÄUER, A ; KLEY, E. B ; TILLMANN, H ; BADER, C ; HÖRHOLD, H.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6188345260f8ccce1f170d866d540b2f4e0d31e3d2b6080c82a154d1e18e48e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Diffraction gratings</topic><topic>Doped-insulator lasers and other solid state lasers</topic><topic>Emission analysis</topic><topic>Energy density</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gratings (spectra)</topic><topic>Lasers</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Physics</topic><topic>Polymers and organics</topic><topic>Pumps</topic><topic>Thresholds</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOLZER, W</creatorcontrib><creatorcontrib>PENZKOFER, A</creatorcontrib><creatorcontrib>PERTSCH, T</creatorcontrib><creatorcontrib>DANZ, N</creatorcontrib><creatorcontrib>BRÄUER, A</creatorcontrib><creatorcontrib>KLEY, E. B</creatorcontrib><creatorcontrib>TILLMANN, H</creatorcontrib><creatorcontrib>BADER, C</creatorcontrib><creatorcontrib>HÖRHOLD, H.-H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOLZER, W</au><au>PENZKOFER, A</au><au>PERTSCH, T</au><au>DANZ, N</au><au>BRÄUER, A</au><au>KLEY, E. B</au><au>TILLMANN, H</au><au>BADER, C</au><au>HÖRHOLD, H.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrugated neat thin-film conjugated polymer distributed-feedback lasers</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>74</volume><issue>4-5</issue><spage>333</spage><epage>342</epage><pages>333-342</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4--9 *mJcm) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to *D*lDFB#~0.07 nm) is considerably narrower than that of the travelling wave laser (*D*lTWL#~14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s003400200821</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2002-04, Vol.74 (4-5), p.333-342
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_1283683357
source Springer Nature - Complete Springer Journals
subjects Diffraction gratings
Doped-insulator lasers and other solid state lasers
Emission analysis
Energy density
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gratings (spectra)
Lasers
Optical materials
Optics
Physics
Polymers and organics
Pumps
Thresholds
Traveling waves
title Corrugated neat thin-film conjugated polymer distributed-feedback lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrugated%20neat%20thin-film%20conjugated%20polymer%20distributed-feedback%20lasers&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=HOLZER,%20W&rft.date=2002-04-01&rft.volume=74&rft.issue=4-5&rft.spage=333&rft.epage=342&rft.pages=333-342&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s003400200821&rft_dat=%3Cproquest_cross%3E1283683357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283683357&rft_id=info:pmid/&rfr_iscdi=true