The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution

We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2010-03, Vol.77 (2), p.021011 (7)-021011 (7)
Hauptverfasser: Kim, C. I, Schiavone, P, Ru, C.-Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 021011 (7)
container_issue 2
container_start_page 021011 (7)
container_title Journal of applied mechanics
container_volume 77
creator Kim, C. I
Schiavone, P
Ru, C.-Q
description We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are used to obtain an exact solution valid everywhere in the domain of interest (including at the crack tip) by reducing the problem to a Cauchy singular integro-differential equation of the first order. Finally, we adapt classical collocation methods to obtain numerical solutions, which demonstrate several interesting phenomena in the case when the solid incorporates a traction-free crack face and is subjected to uniform remote loading. In particular, we note that, in contrast to the classical result from linear elastic fracture mechanics, the stresses at the (sharp) crack tip remain finite.
doi_str_mv 10.1115/1.3177000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283683097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283683097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-eadcd858da4b0c346db953f293fe90392d223013465d15d6bef5322ad1aed00d3</originalsourceid><addsrcrecordid>eNo10D1PwzAQBmALgUQpDMwsHmFI8UfsOGwoKhCpiKFFLEiW6w81JYmL7Qz996RqmU66e3S6ewG4xWiGMWaPeEZxUSCEzsAEMyKyElF-DiYIEZyJkvJLcBXjdgRM8HwCvlcbC-fOWZ0i9A4uh-CUHlutiqnRTdpD30PV_zfg0reNgV9N2sB3b2xW1zWsgtI_T7Dy3a61yR7MkBrfX4MLp9pob051Cj5f5qvqLVt8vNbV8yJTRJCUWWW0EUwYla-Rpjk365JRR0rq7Hh-SQwhFOFxwAxmhq-tY5QQZbCyBiFDp-D-uHcX_O9gY5JdE7VtW9VbP0SJiaBcUFQWI304Uh18jME6uQtNp8JeYiQPCUosTwmO9u5oVeys3Poh9OMXMudlwTn9A2sGano</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283683097</pqid></control><display><type>article</type><title>The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution</title><source>ASME Transactions Journals (Current)</source><creator>Kim, C. I ; Schiavone, P ; Ru, C.-Q</creator><creatorcontrib>Kim, C. I ; Schiavone, P ; Ru, C.-Q</creatorcontrib><description>We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are used to obtain an exact solution valid everywhere in the domain of interest (including at the crack tip) by reducing the problem to a Cauchy singular integro-differential equation of the first order. Finally, we adapt classical collocation methods to obtain numerical solutions, which demonstrate several interesting phenomena in the case when the solid incorporates a traction-free crack face and is subjected to uniform remote loading. In particular, we note that, in contrast to the classical result from linear elastic fracture mechanics, the stresses at the (sharp) crack tip remain finite.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.3177000</identifier><language>eng</language><publisher>ASME</publisher><subject>Complex variables ; Elastic deformation ; Elasticity ; Exact solutions ; Fracture mechanics ; Mathematical analysis ; Mathematical models ; Shear deformation</subject><ispartof>Journal of applied mechanics, 2010-03, Vol.77 (2), p.021011 (7)-021011 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-eadcd858da4b0c346db953f293fe90392d223013465d15d6bef5322ad1aed00d3</citedby><cites>FETCH-LOGICAL-a282t-eadcd858da4b0c346db953f293fe90392d223013465d15d6bef5322ad1aed00d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Kim, C. I</creatorcontrib><creatorcontrib>Schiavone, P</creatorcontrib><creatorcontrib>Ru, C.-Q</creatorcontrib><title>The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are used to obtain an exact solution valid everywhere in the domain of interest (including at the crack tip) by reducing the problem to a Cauchy singular integro-differential equation of the first order. Finally, we adapt classical collocation methods to obtain numerical solutions, which demonstrate several interesting phenomena in the case when the solid incorporates a traction-free crack face and is subjected to uniform remote loading. In particular, we note that, in contrast to the classical result from linear elastic fracture mechanics, the stresses at the (sharp) crack tip remain finite.</description><subject>Complex variables</subject><subject>Elastic deformation</subject><subject>Elasticity</subject><subject>Exact solutions</subject><subject>Fracture mechanics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Shear deformation</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo10D1PwzAQBmALgUQpDMwsHmFI8UfsOGwoKhCpiKFFLEiW6w81JYmL7Qz996RqmU66e3S6ewG4xWiGMWaPeEZxUSCEzsAEMyKyElF-DiYIEZyJkvJLcBXjdgRM8HwCvlcbC-fOWZ0i9A4uh-CUHlutiqnRTdpD30PV_zfg0reNgV9N2sB3b2xW1zWsgtI_T7Dy3a61yR7MkBrfX4MLp9pob051Cj5f5qvqLVt8vNbV8yJTRJCUWWW0EUwYla-Rpjk365JRR0rq7Hh-SQwhFOFxwAxmhq-tY5QQZbCyBiFDp-D-uHcX_O9gY5JdE7VtW9VbP0SJiaBcUFQWI304Uh18jME6uQtNp8JeYiQPCUosTwmO9u5oVeys3Poh9OMXMudlwTn9A2sGano</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Kim, C. I</creator><creator>Schiavone, P</creator><creator>Ru, C.-Q</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100301</creationdate><title>The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution</title><author>Kim, C. I ; Schiavone, P ; Ru, C.-Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-eadcd858da4b0c346db953f293fe90392d223013465d15d6bef5322ad1aed00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Complex variables</topic><topic>Elastic deformation</topic><topic>Elasticity</topic><topic>Exact solutions</topic><topic>Fracture mechanics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Shear deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, C. I</creatorcontrib><creatorcontrib>Schiavone, P</creatorcontrib><creatorcontrib>Ru, C.-Q</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, C. I</au><au>Schiavone, P</au><au>Ru, C.-Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>77</volume><issue>2</issue><spage>021011 (7)</spage><epage>021011 (7)</epage><pages>021011 (7)-021011 (7)</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><abstract>We examined the effects of surface elasticity in a classical mode-III crack problem arising in the antiplane shear deformations of a linearly elastic solid. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. Complex variable methods are used to obtain an exact solution valid everywhere in the domain of interest (including at the crack tip) by reducing the problem to a Cauchy singular integro-differential equation of the first order. Finally, we adapt classical collocation methods to obtain numerical solutions, which demonstrate several interesting phenomena in the case when the solid incorporates a traction-free crack face and is subjected to uniform remote loading. In particular, we note that, in contrast to the classical result from linear elastic fracture mechanics, the stresses at the (sharp) crack tip remain finite.</abstract><pub>ASME</pub><doi>10.1115/1.3177000</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8936
ispartof Journal of applied mechanics, 2010-03, Vol.77 (2), p.021011 (7)-021011 (7)
issn 0021-8936
1528-9036
language eng
recordid cdi_proquest_miscellaneous_1283683097
source ASME Transactions Journals (Current)
subjects Complex variables
Elastic deformation
Elasticity
Exact solutions
Fracture mechanics
Mathematical analysis
Mathematical models
Shear deformation
title The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effects%20of%20Surface%20Elasticity%20on%20an%20Elastic%20Solid%20With%20Mode-III%20Crack:%20Complete%20Solution&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Kim,%20C.%20I&rft.date=2010-03-01&rft.volume=77&rft.issue=2&rft.spage=021011%20(7)&rft.epage=021011%20(7)&rft.pages=021011%20(7)-021011%20(7)&rft.issn=0021-8936&rft.eissn=1528-9036&rft_id=info:doi/10.1115/1.3177000&rft_dat=%3Cproquest_cross%3E1283683097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283683097&rft_id=info:pmid/&rfr_iscdi=true