Hydroxyl tagging velocimetry (HTV) in experimental air flows

The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ~193...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2002-02, Vol.74 (2), p.175-183
Hauptverfasser: RIBAROV, L. A, WEHRMEYER, J. A, PITZ, R. W, YETTER, R. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 175
container_title Applied physics. B, Lasers and optics
container_volume 74
creator RIBAROV, L. A
WEHRMEYER, J. A
PITZ, R. W
YETTER, R. A
description The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ~193-nm ArF excimer laser 'writes' very long grid lines (>50 mm) of superequilibrium OH and H photoproducts in a room air flowfield due to the presence of ambient H2O vapor. After displacement, the positions of the OH tag lines are revealed through fluorescence caused by A*S(*n=0)?X*Pi(*n=0) OH excitation using a pulsed frequency-doubled dye laser with an operating output wavelength of ~308 nm. The dye 'read' laser accesses the strong Q1(1) line, compensating for the relatively weak 193-nm absorption of room-temperature H2O. The weak absorption of ground vibrational state H2O has previously precluded the use of HTV at low temperatures, since previous HTV systems relied on a KrF excimer 'read' laser that could only access a weak (3?0) OH transition. The instantaneous velocity field is determined by time-of-flight analysis. HTV tag lifetime comparisons between experimental results and theoretical predictions are discussed. Multiple-line tag grids are shown displaced due to an experimental air flowfield, thus providing 2-D multipoint velocity information. Due to the instantaneous nature of the HTV tag formation, HTV is particularly suitable for, but not limited to, a variety of fast flowfield applications including nonreacting base flows for high-speed projectiles and low-temperature hypersonic external or internal flows.
doi_str_mv 10.1007/s003400100777
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283681026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283681026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-22f2005799c0b907d2496f987c65c6c5bab1abfb54690aed0a825d3dcc688e003</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWKtH77kI9bA6STbZBLxIUVcoeKlel2w2KSvpbk222v33prQgzmWG4ZvHm4fQNYE7AlDcRwCWA-znojhBE5IzmoHI1SmagMpFRklBztFFjJ-QSkg5QQ_l2IR-N3o86NWq7Vb42_retGs7hBHPyuXHLW47bHcbG9KyG7THug3Y-f4nXqIzp320V8c-Re_PT8t5mS3eXl7nj4vMUCWHjFJHAXihlIFaQdHQXAmnZGEEN8LwWtdE167muVCgbQNaUt6wxphk0aanpmh20N2E_mtr41Ct22is97qz_TZWhEomJAEqEpodUBP6GIN11Sb51mGsCFT7ZKp_KSX-5iito9HeBd2ZNv4dMU4ZF5z9AqnhZY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283681026</pqid></control><display><type>article</type><title>Hydroxyl tagging velocimetry (HTV) in experimental air flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>RIBAROV, L. A ; WEHRMEYER, J. A ; PITZ, R. W ; YETTER, R. A</creator><creatorcontrib>RIBAROV, L. A ; WEHRMEYER, J. A ; PITZ, R. W ; YETTER, R. A</creatorcontrib><description>The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ~193-nm ArF excimer laser 'writes' very long grid lines (&gt;50 mm) of superequilibrium OH and H photoproducts in a room air flowfield due to the presence of ambient H2O vapor. After displacement, the positions of the OH tag lines are revealed through fluorescence caused by A*S(*n=0)?X*Pi(*n=0) OH excitation using a pulsed frequency-doubled dye laser with an operating output wavelength of ~308 nm. The dye 'read' laser accesses the strong Q1(1) line, compensating for the relatively weak 193-nm absorption of room-temperature H2O. The weak absorption of ground vibrational state H2O has previously precluded the use of HTV at low temperatures, since previous HTV systems relied on a KrF excimer 'read' laser that could only access a weak (3?0) OH transition. The instantaneous velocity field is determined by time-of-flight analysis. HTV tag lifetime comparisons between experimental results and theoretical predictions are discussed. Multiple-line tag grids are shown displaced due to an experimental air flowfield, thus providing 2-D multipoint velocity information. Due to the instantaneous nature of the HTV tag formation, HTV is particularly suitable for, but not limited to, a variety of fast flowfield applications including nonreacting base flows for high-speed projectiles and low-temperature hypersonic external or internal flows.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s003400100777</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Base flow ; Biological and medical applications ; Displacement ; Exact sciences and technology ; Excimers ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Laser spectroscopy ; Lasers ; Marking ; Optics ; Physics ; Projectiles ; Velocimetry ; Velocity measurement</subject><ispartof>Applied physics. B, Lasers and optics, 2002-02, Vol.74 (2), p.175-183</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-22f2005799c0b907d2496f987c65c6c5bab1abfb54690aed0a825d3dcc688e003</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13523565$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RIBAROV, L. A</creatorcontrib><creatorcontrib>WEHRMEYER, J. A</creatorcontrib><creatorcontrib>PITZ, R. W</creatorcontrib><creatorcontrib>YETTER, R. A</creatorcontrib><title>Hydroxyl tagging velocimetry (HTV) in experimental air flows</title><title>Applied physics. B, Lasers and optics</title><description>The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ~193-nm ArF excimer laser 'writes' very long grid lines (&gt;50 mm) of superequilibrium OH and H photoproducts in a room air flowfield due to the presence of ambient H2O vapor. After displacement, the positions of the OH tag lines are revealed through fluorescence caused by A*S(*n=0)?X*Pi(*n=0) OH excitation using a pulsed frequency-doubled dye laser with an operating output wavelength of ~308 nm. The dye 'read' laser accesses the strong Q1(1) line, compensating for the relatively weak 193-nm absorption of room-temperature H2O. The weak absorption of ground vibrational state H2O has previously precluded the use of HTV at low temperatures, since previous HTV systems relied on a KrF excimer 'read' laser that could only access a weak (3?0) OH transition. The instantaneous velocity field is determined by time-of-flight analysis. HTV tag lifetime comparisons between experimental results and theoretical predictions are discussed. Multiple-line tag grids are shown displaced due to an experimental air flowfield, thus providing 2-D multipoint velocity information. Due to the instantaneous nature of the HTV tag formation, HTV is particularly suitable for, but not limited to, a variety of fast flowfield applications including nonreacting base flows for high-speed projectiles and low-temperature hypersonic external or internal flows.</description><subject>Base flow</subject><subject>Biological and medical applications</subject><subject>Displacement</subject><subject>Exact sciences and technology</subject><subject>Excimers</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Laser spectroscopy</subject><subject>Lasers</subject><subject>Marking</subject><subject>Optics</subject><subject>Physics</subject><subject>Projectiles</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLAzEQhYMoWKtH77kI9bA6STbZBLxIUVcoeKlel2w2KSvpbk222v33prQgzmWG4ZvHm4fQNYE7AlDcRwCWA-znojhBE5IzmoHI1SmagMpFRklBztFFjJ-QSkg5QQ_l2IR-N3o86NWq7Vb42_retGs7hBHPyuXHLW47bHcbG9KyG7THug3Y-f4nXqIzp320V8c-Re_PT8t5mS3eXl7nj4vMUCWHjFJHAXihlIFaQdHQXAmnZGEEN8LwWtdE167muVCgbQNaUt6wxphk0aanpmh20N2E_mtr41Ct22is97qz_TZWhEomJAEqEpodUBP6GIN11Sb51mGsCFT7ZKp_KSX-5iito9HeBd2ZNv4dMU4ZF5z9AqnhZY8</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>RIBAROV, L. A</creator><creator>WEHRMEYER, J. A</creator><creator>PITZ, R. W</creator><creator>YETTER, R. A</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020201</creationdate><title>Hydroxyl tagging velocimetry (HTV) in experimental air flows</title><author>RIBAROV, L. A ; WEHRMEYER, J. A ; PITZ, R. W ; YETTER, R. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-22f2005799c0b907d2496f987c65c6c5bab1abfb54690aed0a825d3dcc688e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Base flow</topic><topic>Biological and medical applications</topic><topic>Displacement</topic><topic>Exact sciences and technology</topic><topic>Excimers</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Laser spectroscopy</topic><topic>Lasers</topic><topic>Marking</topic><topic>Optics</topic><topic>Physics</topic><topic>Projectiles</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIBAROV, L. A</creatorcontrib><creatorcontrib>WEHRMEYER, J. A</creatorcontrib><creatorcontrib>PITZ, R. W</creatorcontrib><creatorcontrib>YETTER, R. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIBAROV, L. A</au><au>WEHRMEYER, J. A</au><au>PITZ, R. W</au><au>YETTER, R. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyl tagging velocimetry (HTV) in experimental air flows</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>74</volume><issue>2</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>The new nonintrusive instantaneous molecular flow tagging method, hydroxyl tagging velocimetry (HTV), previously demonstrated only for high-temperature reacting flows, is now demonstrated in low-temperature (300 K) ambient air flowfields. Single-photon photodissociation of ground-state H2O by a ~193-nm ArF excimer laser 'writes' very long grid lines (&gt;50 mm) of superequilibrium OH and H photoproducts in a room air flowfield due to the presence of ambient H2O vapor. After displacement, the positions of the OH tag lines are revealed through fluorescence caused by A*S(*n=0)?X*Pi(*n=0) OH excitation using a pulsed frequency-doubled dye laser with an operating output wavelength of ~308 nm. The dye 'read' laser accesses the strong Q1(1) line, compensating for the relatively weak 193-nm absorption of room-temperature H2O. The weak absorption of ground vibrational state H2O has previously precluded the use of HTV at low temperatures, since previous HTV systems relied on a KrF excimer 'read' laser that could only access a weak (3?0) OH transition. The instantaneous velocity field is determined by time-of-flight analysis. HTV tag lifetime comparisons between experimental results and theoretical predictions are discussed. Multiple-line tag grids are shown displaced due to an experimental air flowfield, thus providing 2-D multipoint velocity information. Due to the instantaneous nature of the HTV tag formation, HTV is particularly suitable for, but not limited to, a variety of fast flowfield applications including nonreacting base flows for high-speed projectiles and low-temperature hypersonic external or internal flows.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s003400100777</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2002-02, Vol.74 (2), p.175-183
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_1283681026
source SpringerLink Journals - AutoHoldings
subjects Base flow
Biological and medical applications
Displacement
Exact sciences and technology
Excimers
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Laser spectroscopy
Lasers
Marking
Optics
Physics
Projectiles
Velocimetry
Velocity measurement
title Hydroxyl tagging velocimetry (HTV) in experimental air flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyl%20tagging%20velocimetry%20(HTV)%20in%20experimental%20air%20flows&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=RIBAROV,%20L.%20A&rft.date=2002-02-01&rft.volume=74&rft.issue=2&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s003400100777&rft_dat=%3Cproquest_cross%3E1283681026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283681026&rft_id=info:pmid/&rfr_iscdi=true