Laser decal transfer of freestanding microcantilevers and microbridges

Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2009-11, Vol.97 (3), p.513-519
Hauptverfasser: Auyeung, R. C. Y., Kim, H., Birnbaum, A. J., Zalalutdinov, M., Mathews, S. A., Piqué, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 3
container_start_page 513
container_title Applied physics. A, Materials science & processing
container_volume 97
creator Auyeung, R. C. Y.
Kim, H.
Birnbaum, A. J.
Zalalutdinov, M.
Mathews, S. A.
Piqué, A.
description Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted Q -factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.
doi_str_mv 10.1007/s00339-009-5433-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283679025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283679025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1gsSl4Hw0aY5oYoA0icvuUZY6U6euHXGHxL8nUyeO-GLZfv3Kfhi75_DEAcwzAUhpSwBbVkrKUl-wGVdSlKAlXLIZWGXKWlp9zW6IdpBDCTFjy5UnTEWDwXfFmHxPMZdDLGJCpNH3Tdtvi30b0hB8P7YdfmOiIven5ia1zRbpll1F3xHenfOcrZev68V7ufp8-1i8rMqguBlLjUpvLKhgQq2FRcOrSpsQosBoIdigQ42iqY0JyvJK2Wg3teTaA8QKuZyzx8n2kIavY77P7VsK2HW-x-FIjotaamNBVFnKJ2k-kihhdIfU7n36cRzcCZmbkLmMzJ2QOZ13Hs72njKPmHGElv4WheCS15XMOjHpKI_6LSa3G46pz4__Y_4LkBx7UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283679025</pqid></control><display><type>article</type><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><source>SpringerLink Journals - AutoHoldings</source><creator>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</creator><creatorcontrib>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</creatorcontrib><description>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted Q -factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-009-5433-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Invited Paper ; Lasers ; Machines ; Manufacturing ; Materials science ; Micro- and nanoelectromechanical devices (mems/nems) ; Microorganisms ; Nanocomposites ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Ovens ; Physics ; Physics and Astronomy ; Processes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon substrates ; Silver ; Surfaces and Interfaces ; Thin Films ; Trenches</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2009-11, Vol.97 (3), p.513-519</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</citedby><cites>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-009-5433-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-009-5433-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22131853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Auyeung, R. C. Y.</creatorcontrib><creatorcontrib>Kim, H.</creatorcontrib><creatorcontrib>Birnbaum, A. J.</creatorcontrib><creatorcontrib>Zalalutdinov, M.</creatorcontrib><creatorcontrib>Mathews, S. A.</creatorcontrib><creatorcontrib>Piqué, A.</creatorcontrib><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted Q -factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Invited Paper</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microorganisms</subject><subject>Nanocomposites</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Ovens</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Trenches</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1gsSl4Hw0aY5oYoA0icvuUZY6U6euHXGHxL8nUyeO-GLZfv3Kfhi75_DEAcwzAUhpSwBbVkrKUl-wGVdSlKAlXLIZWGXKWlp9zW6IdpBDCTFjy5UnTEWDwXfFmHxPMZdDLGJCpNH3Tdtvi30b0hB8P7YdfmOiIven5ia1zRbpll1F3xHenfOcrZev68V7ufp8-1i8rMqguBlLjUpvLKhgQq2FRcOrSpsQosBoIdigQ42iqY0JyvJK2Wg3teTaA8QKuZyzx8n2kIavY77P7VsK2HW-x-FIjotaamNBVFnKJ2k-kihhdIfU7n36cRzcCZmbkLmMzJ2QOZ13Hs72njKPmHGElv4WheCS15XMOjHpKI_6LSa3G46pz4__Y_4LkBx7UQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Auyeung, R. C. Y.</creator><creator>Kim, H.</creator><creator>Birnbaum, A. J.</creator><creator>Zalalutdinov, M.</creator><creator>Mathews, S. A.</creator><creator>Piqué, A.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><author>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Invited Paper</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microorganisms</topic><topic>Nanocomposites</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Ovens</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Trenches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auyeung, R. C. Y.</creatorcontrib><creatorcontrib>Kim, H.</creatorcontrib><creatorcontrib>Birnbaum, A. J.</creatorcontrib><creatorcontrib>Zalalutdinov, M.</creatorcontrib><creatorcontrib>Mathews, S. A.</creatorcontrib><creatorcontrib>Piqué, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auyeung, R. C. Y.</au><au>Kim, H.</au><au>Birnbaum, A. J.</au><au>Zalalutdinov, M.</au><au>Mathews, S. A.</au><au>Piqué, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser decal transfer of freestanding microcantilevers and microbridges</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>513</spage><epage>519</epage><pages>513-519</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted Q -factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-009-5433-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.513-519
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1283679025
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Characterization and Evaluation of Materials
Condensed Matter Physics
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Invited Paper
Lasers
Machines
Manufacturing
Materials science
Micro- and nanoelectromechanical devices (mems/nems)
Microorganisms
Nanocomposites
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotechnology
Optical and Electronic Materials
Other topics in nanoscale materials and structures
Ovens
Physics
Physics and Astronomy
Processes
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon substrates
Silver
Surfaces and Interfaces
Thin Films
Trenches
title Laser decal transfer of freestanding microcantilevers and microbridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20decal%20transfer%20of%20freestanding%20microcantilevers%20and%20microbridges&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Auyeung,%20R.%20C.%20Y.&rft.date=2009-11-01&rft.volume=97&rft.issue=3&rft.spage=513&rft.epage=519&rft.pages=513-519&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-009-5433-6&rft_dat=%3Cproquest_cross%3E1283679025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283679025&rft_id=info:pmid/&rfr_iscdi=true