Laser decal transfer of freestanding microcantilevers and microbridges
Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nan...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2009-11, Vol.97 (3), p.513-519 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 3 |
container_start_page | 513 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 97 |
creator | Auyeung, R. C. Y. Kim, H. Birnbaum, A. J. Zalalutdinov, M. Mathews, S. A. Piqué, A. |
description | Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted
Q
-factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state. |
doi_str_mv | 10.1007/s00339-009-5433-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283679025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283679025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1gsSl4Hw0aY5oYoA0icvuUZY6U6euHXGHxL8nUyeO-GLZfv3Kfhi75_DEAcwzAUhpSwBbVkrKUl-wGVdSlKAlXLIZWGXKWlp9zW6IdpBDCTFjy5UnTEWDwXfFmHxPMZdDLGJCpNH3Tdtvi30b0hB8P7YdfmOiIven5ia1zRbpll1F3xHenfOcrZev68V7ufp8-1i8rMqguBlLjUpvLKhgQq2FRcOrSpsQosBoIdigQ42iqY0JyvJK2Wg3teTaA8QKuZyzx8n2kIavY77P7VsK2HW-x-FIjotaamNBVFnKJ2k-kihhdIfU7n36cRzcCZmbkLmMzJ2QOZ13Hs72njKPmHGElv4WheCS15XMOjHpKI_6LSa3G46pz4__Y_4LkBx7UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283679025</pqid></control><display><type>article</type><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><source>SpringerLink Journals - AutoHoldings</source><creator>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</creator><creatorcontrib>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</creatorcontrib><description>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted
Q
-factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-009-5433-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Invited Paper ; Lasers ; Machines ; Manufacturing ; Materials science ; Micro- and nanoelectromechanical devices (mems/nems) ; Microorganisms ; Nanocomposites ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Other topics in nanoscale materials and structures ; Ovens ; Physics ; Physics and Astronomy ; Processes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon substrates ; Silver ; Surfaces and Interfaces ; Thin Films ; Trenches</subject><ispartof>Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.513-519</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</citedby><cites>FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-009-5433-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-009-5433-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22131853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Auyeung, R. C. Y.</creatorcontrib><creatorcontrib>Kim, H.</creatorcontrib><creatorcontrib>Birnbaum, A. J.</creatorcontrib><creatorcontrib>Zalalutdinov, M.</creatorcontrib><creatorcontrib>Mathews, S. A.</creatorcontrib><creatorcontrib>Piqué, A.</creatorcontrib><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted
Q
-factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Invited Paper</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microorganisms</subject><subject>Nanocomposites</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Ovens</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Trenches</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1gsSl4Hw0aY5oYoA0icvuUZY6U6euHXGHxL8nUyeO-GLZfv3Kfhi75_DEAcwzAUhpSwBbVkrKUl-wGVdSlKAlXLIZWGXKWlp9zW6IdpBDCTFjy5UnTEWDwXfFmHxPMZdDLGJCpNH3Tdtvi30b0hB8P7YdfmOiIven5ia1zRbpll1F3xHenfOcrZev68V7ufp8-1i8rMqguBlLjUpvLKhgQq2FRcOrSpsQosBoIdigQ42iqY0JyvJK2Wg3teTaA8QKuZyzx8n2kIavY77P7VsK2HW-x-FIjotaamNBVFnKJ2k-kihhdIfU7n36cRzcCZmbkLmMzJ2QOZ13Hs72njKPmHGElv4WheCS15XMOjHpKI_6LSa3G46pz4__Y_4LkBx7UQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Auyeung, R. C. Y.</creator><creator>Kim, H.</creator><creator>Birnbaum, A. J.</creator><creator>Zalalutdinov, M.</creator><creator>Mathews, S. A.</creator><creator>Piqué, A.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Laser decal transfer of freestanding microcantilevers and microbridges</title><author>Auyeung, R. C. Y. ; Kim, H. ; Birnbaum, A. J. ; Zalalutdinov, M. ; Mathews, S. A. ; Piqué, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6e46b904c7c8629e715567ccf2ef90c9c6c8e2d877c491549f9b8316a00f5e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Invited Paper</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microorganisms</topic><topic>Nanocomposites</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Ovens</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Trenches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auyeung, R. C. Y.</creatorcontrib><creatorcontrib>Kim, H.</creatorcontrib><creatorcontrib>Birnbaum, A. J.</creatorcontrib><creatorcontrib>Zalalutdinov, M.</creatorcontrib><creatorcontrib>Mathews, S. A.</creatorcontrib><creatorcontrib>Piqué, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auyeung, R. C. Y.</au><au>Kim, H.</au><au>Birnbaum, A. J.</au><au>Zalalutdinov, M.</au><au>Mathews, S. A.</au><au>Piqué, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser decal transfer of freestanding microcantilevers and microbridges</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>513</spage><epage>519</epage><pages>513-519</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Freestanding silver microcantilevers and microbridges were fabricated over trenches in Si substrates by the laser decal transfer process without the use of sacrificial layers or subsequent etch processes. Single laser pulses (355 nm, 30 ns FWHM) were used to directly transfer 200 nm thick silver nanopaste layers (5 ?m wide×25 ?m long) over prepatterned Si substrates with 15 ?m wide trenches. By adjusting the position of the laser spot over the substrate, it was possible to directly deposit freestanding microcantilevers 7 to 9 ?m in length or 15-?m long microbridges over the trenches. Subsequent oven curing at 250°C resulted in sintering of the Ag nanoparticles without greatly affecting the shape and form of the transfers. Laser vibrometry experiments yielded fundamental resonance frequencies in vacuum of ?1–2 MHz for the microcantilevers and ?3 MHz for the microbridges. The fitted
Q
-factors averaged 1500 for the microcantilevers and 1400 for the microbridges. Overall, the measured resonances of the microbridges deviated from theoretical predictions in a manner suggesting a tensile residual stress state.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-009-5433-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.513-519 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283679025 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Characterization and Evaluation of Materials Condensed Matter Physics Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Invited Paper Lasers Machines Manufacturing Materials science Micro- and nanoelectromechanical devices (mems/nems) Microorganisms Nanocomposites Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotechnology Optical and Electronic Materials Other topics in nanoscale materials and structures Ovens Physics Physics and Astronomy Processes Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon substrates Silver Surfaces and Interfaces Thin Films Trenches |
title | Laser decal transfer of freestanding microcantilevers and microbridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20decal%20transfer%20of%20freestanding%20microcantilevers%20and%20microbridges&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Auyeung,%20R.%20C.%20Y.&rft.date=2009-11-01&rft.volume=97&rft.issue=3&rft.spage=513&rft.epage=519&rft.pages=513-519&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-009-5433-6&rft_dat=%3Cproquest_cross%3E1283679025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283679025&rft_id=info:pmid/&rfr_iscdi=true |