Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale

Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2009-11, Vol.97 (3), p.617-626
Hauptverfasser: Zheng, Yue, Woo, C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 3
container_start_page 617
container_title Applied physics. A, Materials science & processing
container_volume 97
creator Zheng, Yue
Woo, C. H.
description Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.
doi_str_mv 10.1007/s00339-009-5261-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283678686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283678686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9iyILEY_Ipjj6jiJVViKQuL5brXxVXqFDsZ-u9xlIoRL7Z8vnN070HolpIHSkjzmAnhXGNCNK6ZpFidoRkVnGEiOTlHM6JFgxXX8hJd5bwj5QjGZuhr9Q1p322O0e6Dq8oL2hC3Vecrl0IfnG2rQ-oOkPoAefz2kFIHLbg-FUMeitTavpBFDrGKNnY4Fxtcowtv2ww3p3uOPl-eV4s3vPx4fV88LbETtOmx4FLzutloacETxql2SllGPVgmmF0T1hDQcl27tW-8AMmY5lALLijoDRA-R_dTbpnzZ4Dcm33IDtrWRuiGbChTXDZKKllQOqEudTkn8OaQwt6mo6HEjD2aqUdTejRjj0YVz90p3o5r-WSjC_nPyBjlVMmmcGzicpHiFpLZdUOKZfN_wn8BbZ2DfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283678686</pqid></control><display><type>article</type><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><source>Springer Nature - Complete Springer Journals</source><creator>Zheng, Yue ; Woo, C. H.</creator><creatorcontrib>Zheng, Yue ; Woo, C. H.</creatorcontrib><description>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-009-5261-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Dielectric thin films ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Ferroelectricity and antiferroelectricity ; Machines ; Manufacturing ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Order parameters ; Phase transitions and curie point ; Physics ; Physics and Astronomy ; Processes ; Superlattices ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2009-11, Vol.97 (3), p.617-626</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</citedby><cites>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-009-5261-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-009-5261-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22131867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Woo, C. H.</creatorcontrib><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Dielectric thin films</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectricity and antiferroelectricity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>Phase transitions and curie point</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Superlattices</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9iyILEY_Ipjj6jiJVViKQuL5brXxVXqFDsZ-u9xlIoRL7Z8vnN070HolpIHSkjzmAnhXGNCNK6ZpFidoRkVnGEiOTlHM6JFgxXX8hJd5bwj5QjGZuhr9Q1p322O0e6Dq8oL2hC3Vecrl0IfnG2rQ-oOkPoAefz2kFIHLbg-FUMeitTavpBFDrGKNnY4Fxtcowtv2ww3p3uOPl-eV4s3vPx4fV88LbETtOmx4FLzutloacETxql2SllGPVgmmF0T1hDQcl27tW-8AMmY5lALLijoDRA-R_dTbpnzZ4Dcm33IDtrWRuiGbChTXDZKKllQOqEudTkn8OaQwt6mo6HEjD2aqUdTejRjj0YVz90p3o5r-WSjC_nPyBjlVMmmcGzicpHiFpLZdUOKZfN_wn8BbZ2DfQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Zheng, Yue</creator><creator>Woo, C. H.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><author>Zheng, Yue ; Woo, C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Dielectric thin films</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectricity and antiferroelectricity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>Phase transitions and curie point</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Superlattices</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Woo, C. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yue</au><au>Woo, C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>617</spage><epage>626</epage><pages>617-626</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-009-5261-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.617-626
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1283678686
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Dielectric thin films
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Ferroelectricity and antiferroelectricity
Machines
Manufacturing
Mathematical models
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Order parameters
Phase transitions and curie point
Physics
Physics and Astronomy
Processes
Superlattices
Surfaces and Interfaces
Thin Films
title Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20critical%20properties%20of%20ferroelectric%20superlattices%20in%20nano-scale&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zheng,%20Yue&rft.date=2009-11-01&rft.volume=97&rft.issue=3&rft.spage=617&rft.epage=626&rft.pages=617-626&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-009-5261-8&rft_dat=%3Cproquest_cross%3E1283678686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283678686&rft_id=info:pmid/&rfr_iscdi=true