Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale
Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of mode...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2009-11, Vol.97 (3), p.617-626 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626 |
---|---|
container_issue | 3 |
container_start_page | 617 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 97 |
creator | Zheng, Yue Woo, C. H. |
description | Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects. |
doi_str_mv | 10.1007/s00339-009-5261-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283678686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283678686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9iyILEY_Ipjj6jiJVViKQuL5brXxVXqFDsZ-u9xlIoRL7Z8vnN070HolpIHSkjzmAnhXGNCNK6ZpFidoRkVnGEiOTlHM6JFgxXX8hJd5bwj5QjGZuhr9Q1p322O0e6Dq8oL2hC3Vecrl0IfnG2rQ-oOkPoAefz2kFIHLbg-FUMeitTavpBFDrGKNnY4Fxtcowtv2ww3p3uOPl-eV4s3vPx4fV88LbETtOmx4FLzutloacETxql2SllGPVgmmF0T1hDQcl27tW-8AMmY5lALLijoDRA-R_dTbpnzZ4Dcm33IDtrWRuiGbChTXDZKKllQOqEudTkn8OaQwt6mo6HEjD2aqUdTejRjj0YVz90p3o5r-WSjC_nPyBjlVMmmcGzicpHiFpLZdUOKZfN_wn8BbZ2DfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283678686</pqid></control><display><type>article</type><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><source>Springer Nature - Complete Springer Journals</source><creator>Zheng, Yue ; Woo, C. H.</creator><creatorcontrib>Zheng, Yue ; Woo, C. H.</creatorcontrib><description>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-009-5261-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Dielectric thin films ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Ferroelectricity and antiferroelectricity ; Machines ; Manufacturing ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Order parameters ; Phase transitions and curie point ; Physics ; Physics and Astronomy ; Processes ; Superlattices ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.617-626</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</citedby><cites>FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-009-5261-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-009-5261-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22131867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Woo, C. H.</creatorcontrib><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Dielectric thin films</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectricity and antiferroelectricity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>Phase transitions and curie point</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Superlattices</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9iyILEY_Ipjj6jiJVViKQuL5brXxVXqFDsZ-u9xlIoRL7Z8vnN070HolpIHSkjzmAnhXGNCNK6ZpFidoRkVnGEiOTlHM6JFgxXX8hJd5bwj5QjGZuhr9Q1p322O0e6Dq8oL2hC3Vecrl0IfnG2rQ-oOkPoAefz2kFIHLbg-FUMeitTavpBFDrGKNnY4Fxtcowtv2ww3p3uOPl-eV4s3vPx4fV88LbETtOmx4FLzutloacETxql2SllGPVgmmF0T1hDQcl27tW-8AMmY5lALLijoDRA-R_dTbpnzZ4Dcm33IDtrWRuiGbChTXDZKKllQOqEudTkn8OaQwt6mo6HEjD2aqUdTejRjj0YVz90p3o5r-WSjC_nPyBjlVMmmcGzicpHiFpLZdUOKZfN_wn8BbZ2DfQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Zheng, Yue</creator><creator>Woo, C. H.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</title><author>Zheng, Yue ; Woo, C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4369357d96aef02319c88a21fea242ab0270e96b5cbf7f4e62293e54341e9de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Dielectric thin films</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectricity and antiferroelectricity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>Phase transitions and curie point</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Superlattices</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Woo, C. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yue</au><au>Woo, C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>617</spage><epage>626</epage><pages>617-626</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Modeling nano-scale ferroelectric superlattices using the Landau free-energy functional approach requires incorporating contributions from the interfacial and depolarization field effects. The choice of the order parameter then becomes a vital issue. In this paper, we compare the predictions of models using the spontaneous polarization as order parameter (SPOP approach) with models using the total polarization as order parameter (TPOP approach). We have comprehensively calculated the critical properties of nano-scale ferroelectric superlattices, such as the phase-transition temperature, critical thickness and Curie–Weiss-type relation using both approaches. We found that all the SPOP results are in excellent agreement with experimental measurements and first-principle calculations in all cases studied here. The TPOP approach, on the other hand, much overestimates the depolarization by underestimating the effect of the dielectric screening and produces results that deviate significantly from the experimental ones. Our results also traced the dependence of the critical properties on the thicknesses of the constituent layers of the ferroelectric superlattices to the interfacial and depolarization field effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-009-5261-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2009-11, Vol.97 (3), p.617-626 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283678686 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Condensed matter: electronic structure, electrical, magnetic, and optical properties Dielectric thin films Dielectrics, piezoelectrics, and ferroelectrics and their properties Exact sciences and technology Ferroelectric materials Ferroelectricity Ferroelectricity and antiferroelectricity Machines Manufacturing Mathematical models Nanocomposites Nanomaterials Nanostructure Nanotechnology Optical and Electronic Materials Order parameters Phase transitions and curie point Physics Physics and Astronomy Processes Superlattices Surfaces and Interfaces Thin Films |
title | Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20critical%20properties%20of%20ferroelectric%20superlattices%20in%20nano-scale&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zheng,%20Yue&rft.date=2009-11-01&rft.volume=97&rft.issue=3&rft.spage=617&rft.epage=626&rft.pages=617-626&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-009-5261-8&rft_dat=%3Cproquest_cross%3E1283678686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283678686&rft_id=info:pmid/&rfr_iscdi=true |