Simulation of a Biological System On an Analog Computer

The purpose of this paper is to discuss a method for the construction of a mathematical model of a large biological system. This method, based on Gibbs' free energy hypothesis, uses the format of mathematical programming, while the actual computation is ac complished by the method of steepest d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation (San Diego, Calif.) Calif.), 1964-04, Vol.2 (4), p.R-9-R-18
1. Verfasser: DeLand, E.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R-18
container_issue 4
container_start_page R-9
container_title Simulation (San Diego, Calif.)
container_volume 2
creator DeLand, E.C.
description The purpose of this paper is to discuss a method for the construction of a mathematical model of a large biological system. This method, based on Gibbs' free energy hypothesis, uses the format of mathematical programming, while the actual computation is ac complished by the method of steepest descent. The biological system chosen to exemplify the mathe matical method was the respiratory function of the blood in the human lung. This method is based on the postulate that chemical mixtures tend toward a reaction equilibrium which minimizes the potential, or free energy, of the system. We may thus write down the classical Gibbs free energy function for each chemical species, and require that total free energy relative to some standard state be minimized under the conditions of the experiment. The solution of the equilibrium problem consists of a set of mole numbers which minimizes the free energy function, subject to equations for conservation of mass and nonnegativity. The analog computer solution of the respiration model was undertaken not only to give fast, sensitive tests of the mathematical model and its assumptions, but also to obtain a simulation of the time depend ent system. Examples of the mechanization of the equations are presented in this paper, and also results are computed for the static equilibrium of a canoni cal model.
doi_str_mv 10.1177/003754976400200410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283676631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_003754976400200410</sage_id><sourcerecordid>1283676631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-6d6ea74b52b54b2210e465d53e69640b0b9b816d86d14348e993490d341c0783</originalsourceid><addsrcrecordid>eNp9kMFOhDAQhhujiYi-gKceveDO0NLCcSW6mmyyh917U6Bs2ADFFg779kLwZuJpksn3Teb_CXlGeEWUcgPAZMIzKThADMARbkiAkmPEkLFbEixAtBD35MH7CwAmKEVA5LHpplaPje2prammb41t7bkpdUuPVz-ajh56qnu67fW8p7nthmk07pHc1br15ul3huT08X7KP6P9YfeVb_dRiakYI1EJoyUvkrhIeBHHCIaLpEqYEdn8awFFVqQoqlRUyBlPTZYxnkHFOJYgUxaSl_Xs4Oz3ZPyousaXpm11b-zkFcYpE1KIOWVI4hUtnfXemVoNrum0uyoEtZSk_pY0S5tV8vps1MVObo7p_zN-AG-RY-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283676631</pqid></control><display><type>article</type><title>Simulation of a Biological System On an Analog Computer</title><source>Access via SAGE</source><creator>DeLand, E.C.</creator><creatorcontrib>DeLand, E.C.</creatorcontrib><description>The purpose of this paper is to discuss a method for the construction of a mathematical model of a large biological system. This method, based on Gibbs' free energy hypothesis, uses the format of mathematical programming, while the actual computation is ac complished by the method of steepest descent. The biological system chosen to exemplify the mathe matical method was the respiratory function of the blood in the human lung. This method is based on the postulate that chemical mixtures tend toward a reaction equilibrium which minimizes the potential, or free energy, of the system. We may thus write down the classical Gibbs free energy function for each chemical species, and require that total free energy relative to some standard state be minimized under the conditions of the experiment. The solution of the equilibrium problem consists of a set of mole numbers which minimizes the free energy function, subject to equations for conservation of mass and nonnegativity. The analog computer solution of the respiration model was undertaken not only to give fast, sensitive tests of the mathematical model and its assumptions, but also to obtain a simulation of the time depend ent system. Examples of the mechanization of the equations are presented in this paper, and also results are computed for the static equilibrium of a canoni cal model.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/003754976400200410</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Analog computers ; Biological ; Computation ; Computer simulation ; Conservation ; Free energy ; Mathematical analysis ; Mathematical models</subject><ispartof>Simulation (San Diego, Calif.), 1964-04, Vol.2 (4), p.R-9-R-18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-6d6ea74b52b54b2210e465d53e69640b0b9b816d86d14348e993490d341c0783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/003754976400200410$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/003754976400200410$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>DeLand, E.C.</creatorcontrib><title>Simulation of a Biological System On an Analog Computer</title><title>Simulation (San Diego, Calif.)</title><description>The purpose of this paper is to discuss a method for the construction of a mathematical model of a large biological system. This method, based on Gibbs' free energy hypothesis, uses the format of mathematical programming, while the actual computation is ac complished by the method of steepest descent. The biological system chosen to exemplify the mathe matical method was the respiratory function of the blood in the human lung. This method is based on the postulate that chemical mixtures tend toward a reaction equilibrium which minimizes the potential, or free energy, of the system. We may thus write down the classical Gibbs free energy function for each chemical species, and require that total free energy relative to some standard state be minimized under the conditions of the experiment. The solution of the equilibrium problem consists of a set of mole numbers which minimizes the free energy function, subject to equations for conservation of mass and nonnegativity. The analog computer solution of the respiration model was undertaken not only to give fast, sensitive tests of the mathematical model and its assumptions, but also to obtain a simulation of the time depend ent system. Examples of the mechanization of the equations are presented in this paper, and also results are computed for the static equilibrium of a canoni cal model.</description><subject>Analog computers</subject><subject>Biological</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Free energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1964</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOhDAQhhujiYi-gKceveDO0NLCcSW6mmyyh917U6Bs2ADFFg779kLwZuJpksn3Teb_CXlGeEWUcgPAZMIzKThADMARbkiAkmPEkLFbEixAtBD35MH7CwAmKEVA5LHpplaPje2prammb41t7bkpdUuPVz-ajh56qnu67fW8p7nthmk07pHc1br15ul3huT08X7KP6P9YfeVb_dRiakYI1EJoyUvkrhIeBHHCIaLpEqYEdn8awFFVqQoqlRUyBlPTZYxnkHFOJYgUxaSl_Xs4Oz3ZPyousaXpm11b-zkFcYpE1KIOWVI4hUtnfXemVoNrum0uyoEtZSk_pY0S5tV8vps1MVObo7p_zN-AG-RY-g</recordid><startdate>196404</startdate><enddate>196404</enddate><creator>DeLand, E.C.</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>196404</creationdate><title>Simulation of a Biological System On an Analog Computer</title><author>DeLand, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-6d6ea74b52b54b2210e465d53e69640b0b9b816d86d14348e993490d341c0783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1964</creationdate><topic>Analog computers</topic><topic>Biological</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Free energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeLand, E.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeLand, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of a Biological System On an Analog Computer</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>1964-04</date><risdate>1964</risdate><volume>2</volume><issue>4</issue><spage>R-9</spage><epage>R-18</epage><pages>R-9-R-18</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>The purpose of this paper is to discuss a method for the construction of a mathematical model of a large biological system. This method, based on Gibbs' free energy hypothesis, uses the format of mathematical programming, while the actual computation is ac complished by the method of steepest descent. The biological system chosen to exemplify the mathe matical method was the respiratory function of the blood in the human lung. This method is based on the postulate that chemical mixtures tend toward a reaction equilibrium which minimizes the potential, or free energy, of the system. We may thus write down the classical Gibbs free energy function for each chemical species, and require that total free energy relative to some standard state be minimized under the conditions of the experiment. The solution of the equilibrium problem consists of a set of mole numbers which minimizes the free energy function, subject to equations for conservation of mass and nonnegativity. The analog computer solution of the respiration model was undertaken not only to give fast, sensitive tests of the mathematical model and its assumptions, but also to obtain a simulation of the time depend ent system. Examples of the mechanization of the equations are presented in this paper, and also results are computed for the static equilibrium of a canoni cal model.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/003754976400200410</doi></addata></record>
fulltext fulltext
identifier ISSN: 0037-5497
ispartof Simulation (San Diego, Calif.), 1964-04, Vol.2 (4), p.R-9-R-18
issn 0037-5497
1741-3133
language eng
recordid cdi_proquest_miscellaneous_1283676631
source Access via SAGE
subjects Analog computers
Biological
Computation
Computer simulation
Conservation
Free energy
Mathematical analysis
Mathematical models
title Simulation of a Biological System On an Analog Computer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20a%20Biological%20System%20On%20an%20Analog%20Computer&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=DeLand,%20E.C.&rft.date=1964-04&rft.volume=2&rft.issue=4&rft.spage=R-9&rft.epage=R-18&rft.pages=R-9-R-18&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/003754976400200410&rft_dat=%3Cproquest_cross%3E1283676631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283676631&rft_id=info:pmid/&rft_sage_id=10.1177_003754976400200410&rfr_iscdi=true