On the chromaticity of the 2-degree integral subgraph ofq-trees

A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2007-09, Vol.25 (1-2), p.155-167
Hauptverfasser: Li, Xiaodong, Liu, Xiangwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1-2
container_start_page 155
container_title Journal of applied mathematics & computing
container_volume 25
creator Li, Xiaodong
Liu, Xiangwu
description A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1 vertices such that their intersection of neighborhoods ofu, v forms a complete graphK ^sub q^, and adding a new vertexx, new edgesxu, xv, xv ^sub 1^,xv ^sub 2^, ...,xv ^sub q- 4^, where {v ^sub 1^,v ^sub 2^,...,v ^sub q^-4} -K ^sub q^. In this paper we prove that a graphG with minimum degree not equal toq -3 and chromatic polynomialP(G;λ) = λ(λ - 1) ... (λ -q +2)(λ -q +1)^sup 3^(λ -q)^sup n- q- 2^ withn ≥ q + 2 has and only has 2-degree integral subgraph of q-tree withn vertices and added-vertex q-tree withn vertices.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02832344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283676325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089405581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c955-8fa96c9708f8e2489f08642ac136615334407693cf487fa38dab436204ff0c183</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKsbf8HgSoTozXOSlWixKhS66T6kaeJMmUebzCz6702tILg6h3s_7uMgdEvgkQCUT69zoIpRxvkZmhAlBaagxHn2QisscuESXaW0BZClBj1Bz8uuGCpfuCr2rR1qVw-Hog8_NYo3_it6X9TdkI1tijSus-6qTOzxkFvpGl0E2yR_86tTtJq_rWYfeLF8_5y9LLDTQmAVrJZOl6CC8pQrHUBJTq0jTEoiWL4XSqmZC1yVwTK1sWvOJAUeAjii2BTdn8buYr8ffRpMWyfnm8Z2vh-TIflrWUpGRUbv_qHbfoxdPs5IrkjeRI7QwwlysU8p-mB2sW5tPBgC5pik-UuSfQObVWJv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>648144015</pqid></control><display><type>article</type><title>On the chromaticity of the 2-degree integral subgraph ofq-trees</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Xiaodong ; Liu, Xiangwu</creator><creatorcontrib>Li, Xiaodong ; Liu, Xiangwu</creatorcontrib><description>A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1 vertices such that their intersection of neighborhoods ofu, v forms a complete graphK ^sub q^, and adding a new vertexx, new edgesxu, xv, xv ^sub 1^,xv ^sub 2^, ...,xv ^sub q- 4^, where {v ^sub 1^,v ^sub 2^,...,v ^sub q^-4} -K ^sub q^. In this paper we prove that a graphG with minimum degree not equal toq -3 and chromatic polynomialP(G;λ) = λ(λ - 1) ... (λ -q +2)(λ -q +1)^sup 3^(λ -q)^sup n- q- 2^ withn ≥ q + 2 has and only has 2-degree integral subgraph of q-tree withn vertices and added-vertex q-tree withn vertices.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/BF02832344</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Alloys ; Chromaticity ; Computation ; Integrals ; Intersections ; Mathematical models ; Triangles</subject><ispartof>Journal of applied mathematics &amp; computing, 2007-09, Vol.25 (1-2), p.155-167</ispartof><rights>Korean Society for Computational &amp; Applied Mathematics 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c955-8fa96c9708f8e2489f08642ac136615334407693cf487fa38dab436204ff0c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xiangwu</creatorcontrib><title>On the chromaticity of the 2-degree integral subgraph ofq-trees</title><title>Journal of applied mathematics &amp; computing</title><description>A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1 vertices such that their intersection of neighborhoods ofu, v forms a complete graphK ^sub q^, and adding a new vertexx, new edgesxu, xv, xv ^sub 1^,xv ^sub 2^, ...,xv ^sub q- 4^, where {v ^sub 1^,v ^sub 2^,...,v ^sub q^-4} -K ^sub q^. In this paper we prove that a graphG with minimum degree not equal toq -3 and chromatic polynomialP(G;λ) = λ(λ - 1) ... (λ -q +2)(λ -q +1)^sup 3^(λ -q)^sup n- q- 2^ withn ≥ q + 2 has and only has 2-degree integral subgraph of q-tree withn vertices and added-vertex q-tree withn vertices.[PUBLICATION ABSTRACT]</description><subject>Alloys</subject><subject>Chromaticity</subject><subject>Computation</subject><subject>Integrals</subject><subject>Intersections</subject><subject>Mathematical models</subject><subject>Triangles</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMoWKsbf8HgSoTozXOSlWixKhS66T6kaeJMmUebzCz6702tILg6h3s_7uMgdEvgkQCUT69zoIpRxvkZmhAlBaagxHn2QisscuESXaW0BZClBj1Bz8uuGCpfuCr2rR1qVw-Hog8_NYo3_it6X9TdkI1tijSus-6qTOzxkFvpGl0E2yR_86tTtJq_rWYfeLF8_5y9LLDTQmAVrJZOl6CC8pQrHUBJTq0jTEoiWL4XSqmZC1yVwTK1sWvOJAUeAjii2BTdn8buYr8ffRpMWyfnm8Z2vh-TIflrWUpGRUbv_qHbfoxdPs5IrkjeRI7QwwlysU8p-mB2sW5tPBgC5pik-UuSfQObVWJv</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Li, Xiaodong</creator><creator>Liu, Xiangwu</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070901</creationdate><title>On the chromaticity of the 2-degree integral subgraph ofq-trees</title><author>Li, Xiaodong ; Liu, Xiangwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c955-8fa96c9708f8e2489f08642ac136615334407693cf487fa38dab436204ff0c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloys</topic><topic>Chromaticity</topic><topic>Computation</topic><topic>Integrals</topic><topic>Intersections</topic><topic>Mathematical models</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Liu, Xiangwu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaodong</au><au>Liu, Xiangwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the chromaticity of the 2-degree integral subgraph ofq-trees</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>25</volume><issue>1-2</issue><spage>155</spage><epage>167</epage><pages>155-167</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>A graphG is called to be a 2-degree integral subgraph of aq-tree if it is obtained by deleting an edge e from an integral subgraph that is contained in exactlyq- 1 triangles. An added-vertexq-treeG with n vertices is obtained by taking two verticesu, v (u, v are not adjacent) in a q-treesT withn -1 vertices such that their intersection of neighborhoods ofu, v forms a complete graphK ^sub q^, and adding a new vertexx, new edgesxu, xv, xv ^sub 1^,xv ^sub 2^, ...,xv ^sub q- 4^, where {v ^sub 1^,v ^sub 2^,...,v ^sub q^-4} -K ^sub q^. In this paper we prove that a graphG with minimum degree not equal toq -3 and chromatic polynomialP(G;λ) = λ(λ - 1) ... (λ -q +2)(λ -q +1)^sup 3^(λ -q)^sup n- q- 2^ withn ≥ q + 2 has and only has 2-degree integral subgraph of q-tree withn vertices and added-vertex q-tree withn vertices.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02832344</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2007-09, Vol.25 (1-2), p.155-167
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_miscellaneous_1283676325
source SpringerLink Journals - AutoHoldings
subjects Alloys
Chromaticity
Computation
Integrals
Intersections
Mathematical models
Triangles
title On the chromaticity of the 2-degree integral subgraph ofq-trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20chromaticity%20of%20the%202-degree%20integral%20subgraph%20ofq-trees&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Li,%20Xiaodong&rft.date=2007-09-01&rft.volume=25&rft.issue=1-2&rft.spage=155&rft.epage=167&rft.pages=155-167&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/BF02832344&rft_dat=%3Cproquest_cross%3E2089405581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=648144015&rft_id=info:pmid/&rfr_iscdi=true