Ratchet patterns sort molecular shuttles
Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits gui...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2002-08, Vol.75 (2), p.309-313 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 2 |
container_start_page | 309 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 75 |
creator | Hess, H. Clemmens, J. Matzke, C.M. Bachand, G.D. Bunker, B.C. Vogel, V. |
description | Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion. |
doi_str_mv | 10.1007/s003390201339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283676311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283676311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</originalsourceid><addsrcrecordid>eNpVkEFLxDAUhIMoWFeP3nvcS_S9pE3SoyzqCguC6DmkacqupNualx7891bWi3P5LsMwfIzdItwhgL4nACkbEIALzliBlRQclIRzVkBTaW5koy7ZFdEnLKmEKNj6zWW_D7mcXM4hHamkMeVyGGPwc3SppP2ccwx0zS56Fync_HHFPp4e3zdbvnt9ftk87LgXymSuTIem9a7ravRt53XdNgBeYg0KdRCgsXJm-efqCr0MfW-Uc0YH7BoJWMsVW592pzR-zYGyHQ7kQ4zuGMaZLAojlVYScanyU9WnkSiF3k7pMLj0bRHsrxH7z4j8AVG3UeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283676311</pqid></control><display><type>article</type><title>Ratchet patterns sort molecular shuttles</title><source>SpringerNature Journals</source><creator>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</creator><creatorcontrib>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</creatorcontrib><description>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s003390201339</identifier><language>eng</language><subject>Barriers ; Channels ; Curvature ; Materials science ; Mathematical analysis ; Motors ; Proteins ; Rigidity</subject><ispartof>Applied physics. A, Materials science & processing, 2002-08, Vol.75 (2), p.309-313</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hess, H.</creatorcontrib><creatorcontrib>Clemmens, J.</creatorcontrib><creatorcontrib>Matzke, C.M.</creatorcontrib><creatorcontrib>Bachand, G.D.</creatorcontrib><creatorcontrib>Bunker, B.C.</creatorcontrib><creatorcontrib>Vogel, V.</creatorcontrib><title>Ratchet patterns sort molecular shuttles</title><title>Applied physics. A, Materials science & processing</title><description>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</description><subject>Barriers</subject><subject>Channels</subject><subject>Curvature</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Motors</subject><subject>Proteins</subject><subject>Rigidity</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLxDAUhIMoWFeP3nvcS_S9pE3SoyzqCguC6DmkacqupNualx7891bWi3P5LsMwfIzdItwhgL4nACkbEIALzliBlRQclIRzVkBTaW5koy7ZFdEnLKmEKNj6zWW_D7mcXM4hHamkMeVyGGPwc3SppP2ccwx0zS56Fync_HHFPp4e3zdbvnt9ftk87LgXymSuTIem9a7ravRt53XdNgBeYg0KdRCgsXJm-efqCr0MfW-Uc0YH7BoJWMsVW592pzR-zYGyHQ7kQ4zuGMaZLAojlVYScanyU9WnkSiF3k7pMLj0bRHsrxH7z4j8AVG3UeM</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Hess, H.</creator><creator>Clemmens, J.</creator><creator>Matzke, C.M.</creator><creator>Bachand, G.D.</creator><creator>Bunker, B.C.</creator><creator>Vogel, V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200208</creationdate><title>Ratchet patterns sort molecular shuttles</title><author>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Barriers</topic><topic>Channels</topic><topic>Curvature</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Motors</topic><topic>Proteins</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, H.</creatorcontrib><creatorcontrib>Clemmens, J.</creatorcontrib><creatorcontrib>Matzke, C.M.</creatorcontrib><creatorcontrib>Bachand, G.D.</creatorcontrib><creatorcontrib>Bunker, B.C.</creatorcontrib><creatorcontrib>Vogel, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, H.</au><au>Clemmens, J.</au><au>Matzke, C.M.</au><au>Bachand, G.D.</au><au>Bunker, B.C.</au><au>Vogel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratchet patterns sort molecular shuttles</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><date>2002-08</date><risdate>2002</risdate><volume>75</volume><issue>2</issue><spage>309</spage><epage>313</epage><pages>309-313</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</abstract><doi>10.1007/s003390201339</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2002-08, Vol.75 (2), p.309-313 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283676311 |
source | SpringerNature Journals |
subjects | Barriers Channels Curvature Materials science Mathematical analysis Motors Proteins Rigidity |
title | Ratchet patterns sort molecular shuttles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratchet%20patterns%20sort%20molecular%20shuttles&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Hess,%20H.&rft.date=2002-08&rft.volume=75&rft.issue=2&rft.spage=309&rft.epage=313&rft.pages=309-313&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s003390201339&rft_dat=%3Cproquest_cross%3E1283676311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283676311&rft_id=info:pmid/&rfr_iscdi=true |