Ratchet patterns sort molecular shuttles

Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits gui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2002-08, Vol.75 (2), p.309-313
Hauptverfasser: Hess, H., Clemmens, J., Matzke, C.M., Bachand, G.D., Bunker, B.C., Vogel, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 2
container_start_page 309
container_title Applied physics. A, Materials science & processing
container_volume 75
creator Hess, H.
Clemmens, J.
Matzke, C.M.
Bachand, G.D.
Bunker, B.C.
Vogel, V.
description Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.
doi_str_mv 10.1007/s003390201339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283676311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283676311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</originalsourceid><addsrcrecordid>eNpVkEFLxDAUhIMoWFeP3nvcS_S9pE3SoyzqCguC6DmkacqupNualx7891bWi3P5LsMwfIzdItwhgL4nACkbEIALzliBlRQclIRzVkBTaW5koy7ZFdEnLKmEKNj6zWW_D7mcXM4hHamkMeVyGGPwc3SppP2ccwx0zS56Fync_HHFPp4e3zdbvnt9ftk87LgXymSuTIem9a7ravRt53XdNgBeYg0KdRCgsXJm-efqCr0MfW-Uc0YH7BoJWMsVW592pzR-zYGyHQ7kQ4zuGMaZLAojlVYScanyU9WnkSiF3k7pMLj0bRHsrxH7z4j8AVG3UeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283676311</pqid></control><display><type>article</type><title>Ratchet patterns sort molecular shuttles</title><source>SpringerNature Journals</source><creator>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</creator><creatorcontrib>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</creatorcontrib><description>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s003390201339</identifier><language>eng</language><subject>Barriers ; Channels ; Curvature ; Materials science ; Mathematical analysis ; Motors ; Proteins ; Rigidity</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2002-08, Vol.75 (2), p.309-313</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hess, H.</creatorcontrib><creatorcontrib>Clemmens, J.</creatorcontrib><creatorcontrib>Matzke, C.M.</creatorcontrib><creatorcontrib>Bachand, G.D.</creatorcontrib><creatorcontrib>Bunker, B.C.</creatorcontrib><creatorcontrib>Vogel, V.</creatorcontrib><title>Ratchet patterns sort molecular shuttles</title><title>Applied physics. A, Materials science &amp; processing</title><description>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</description><subject>Barriers</subject><subject>Channels</subject><subject>Curvature</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Motors</subject><subject>Proteins</subject><subject>Rigidity</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLxDAUhIMoWFeP3nvcS_S9pE3SoyzqCguC6DmkacqupNualx7891bWi3P5LsMwfIzdItwhgL4nACkbEIALzliBlRQclIRzVkBTaW5koy7ZFdEnLKmEKNj6zWW_D7mcXM4hHamkMeVyGGPwc3SppP2ccwx0zS56Fync_HHFPp4e3zdbvnt9ftk87LgXymSuTIem9a7ravRt53XdNgBeYg0KdRCgsXJm-efqCr0MfW-Uc0YH7BoJWMsVW592pzR-zYGyHQ7kQ4zuGMaZLAojlVYScanyU9WnkSiF3k7pMLj0bRHsrxH7z4j8AVG3UeM</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Hess, H.</creator><creator>Clemmens, J.</creator><creator>Matzke, C.M.</creator><creator>Bachand, G.D.</creator><creator>Bunker, B.C.</creator><creator>Vogel, V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200208</creationdate><title>Ratchet patterns sort molecular shuttles</title><author>Hess, H. ; Clemmens, J. ; Matzke, C.M. ; Bachand, G.D. ; Bunker, B.C. ; Vogel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-68d18bcadd51cbdc75b900c3150617e20714a8339a541c3eff86aa87e1d930153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Barriers</topic><topic>Channels</topic><topic>Curvature</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Motors</topic><topic>Proteins</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, H.</creatorcontrib><creatorcontrib>Clemmens, J.</creatorcontrib><creatorcontrib>Matzke, C.M.</creatorcontrib><creatorcontrib>Bachand, G.D.</creatorcontrib><creatorcontrib>Bunker, B.C.</creatorcontrib><creatorcontrib>Vogel, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, H.</au><au>Clemmens, J.</au><au>Matzke, C.M.</au><au>Bachand, G.D.</au><au>Bunker, B.C.</au><au>Vogel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratchet patterns sort molecular shuttles</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><date>2002-08</date><risdate>2002</risdate><volume>75</volume><issue>2</issue><spage>309</spage><epage>313</epage><pages>309-313</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Molecular shuttles based on microtubules propelled by motor proteins can be guided on surfaces by adsorbing motors in chemical patterns or by using open guiding channels. While chemical patterns can guide microtubules based on a Brownian ratchet mechanism, the rigidity of the microtubules limits guiding to features with dimensions on the order of their persistence length (5 mm). To achieve guiding on micron-scale dimensions, physical barriers are required which can exploit the forces exerted by multiple motors to bend tubules into tight radii of curvature. Microtubule guiding is illustrated for the case of a special ratchet pattern that is capable of sorting microtubules on the basis of the direction of their motion.</abstract><doi>10.1007/s003390201339</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2002-08, Vol.75 (2), p.309-313
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1283676311
source SpringerNature Journals
subjects Barriers
Channels
Curvature
Materials science
Mathematical analysis
Motors
Proteins
Rigidity
title Ratchet patterns sort molecular shuttles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratchet%20patterns%20sort%20molecular%20shuttles&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Hess,%20H.&rft.date=2002-08&rft.volume=75&rft.issue=2&rft.spage=309&rft.epage=313&rft.pages=309-313&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s003390201339&rft_dat=%3Cproquest_cross%3E1283676311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283676311&rft_id=info:pmid/&rfr_iscdi=true