Additive operators preserving rank-additivity on symmetry matrix spaces
We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. LetSn(F) be the space of alln×n symmetry matrices over a fieldF with 2,3 ∈F*, thenT is an additive injective operator preserving rank-additivity onSn(F) if and only if there exists an invertible matrixU∈Mn(F...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2004-03, Vol.14 (1-2), p.115-122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. LetSn(F) be the space of alln×n symmetry matrices over a fieldF with 2,3 ∈F*, thenT is an additive injective operator preserving rank-additivity onSn(F) if and only if there exists an invertible matrixU∈Mn(F) and an injective field homomorphism ϕ ofF to itself such thatT(X)=cUXϕUT, ∀X=(xij)∈Sn(F) wherec∈F*,Xϕ=(ϕ(xij)). As applications, we determine the additive operators preserving minus-order onSn(F) over the fieldF. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/BF02936102 |