Simulation of Biological Systems: Contraction of Skeletal Muscle

The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation (San Diego, Calif.) Calif.), 1976-06, Vol.26 (6), p.165-168
1. Verfasser: Noble, David F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 6
container_start_page 165
container_title Simulation (San Diego, Calif.)
container_volume 26
creator Noble, David F.
description The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.
doi_str_mv 10.1177/003754977602600604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283675049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_003754977602600604</sage_id><sourcerecordid>1283675049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQp_AGmjCyh59ixayag4ksqYgjM1sW1qxQnLnYy9N-TqjAhMZ10et6T7iXkksI1pVLOAJgsuZJSQCEABPAjMqGS05xRxo7JZA_yvTglZyltAGhJpZiQ26ppB499E7osuOy-CT6sG4M-q3apt226yRah6yOaX1J9Wm_7EbwOyXh7Tk4c-mQvfuaUfDw-vC-e8-Xb08vibpmbQqg-l5zDCmrhhHBGOIYWpJSlqgGZKgHpSkleM2COz2vkNTKGteK0mK-EUeN-Sq4Od7cxfA029bptkrHeY2fDkPQomZAlcDXS4kBNDClF6_Q2Ni3Gnaag93Xpv3WNodkhlHBt9SYMsRvf-S_xDaOvaSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283675049</pqid></control><display><type>article</type><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><source>Access via SAGE</source><creator>Noble, David F.</creator><creatorcontrib>Noble, David F.</creatorcontrib><description>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/003754977602600604</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Biological ; Bridges (structures) ; Computer simulation ; Electron micrographs ; Generators ; Mathematical models ; Muscles ; Simulation</subject><ispartof>Simulation (San Diego, Calif.), 1976-06, Vol.26 (6), p.165-168</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/003754977602600604$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/003754977602600604$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Noble, David F.</creatorcontrib><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><title>Simulation (San Diego, Calif.)</title><description>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</description><subject>Biological</subject><subject>Bridges (structures)</subject><subject>Computer simulation</subject><subject>Electron micrographs</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Muscles</subject><subject>Simulation</subject><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQp_AGmjCyh59ixayag4ksqYgjM1sW1qxQnLnYy9N-TqjAhMZ10et6T7iXkksI1pVLOAJgsuZJSQCEABPAjMqGS05xRxo7JZA_yvTglZyltAGhJpZiQ26ppB499E7osuOy-CT6sG4M-q3apt226yRah6yOaX1J9Wm_7EbwOyXh7Tk4c-mQvfuaUfDw-vC-e8-Xb08vibpmbQqg-l5zDCmrhhHBGOIYWpJSlqgGZKgHpSkleM2COz2vkNTKGteK0mK-EUeN-Sq4Od7cxfA029bptkrHeY2fDkPQomZAlcDXS4kBNDClF6_Q2Ni3Gnaag93Xpv3WNodkhlHBt9SYMsRvf-S_xDaOvaSk</recordid><startdate>197606</startdate><enddate>197606</enddate><creator>Noble, David F.</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197606</creationdate><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><author>Noble, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Biological</topic><topic>Bridges (structures)</topic><topic>Computer simulation</topic><topic>Electron micrographs</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Muscles</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noble, David F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noble, David F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Biological Systems: Contraction of Skeletal Muscle</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>1976-06</date><risdate>1976</risdate><volume>26</volume><issue>6</issue><spage>165</spage><epage>168</epage><pages>165-168</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/003754977602600604</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-5497
ispartof Simulation (San Diego, Calif.), 1976-06, Vol.26 (6), p.165-168
issn 0037-5497
1741-3133
language eng
recordid cdi_proquest_miscellaneous_1283675049
source Access via SAGE
subjects Biological
Bridges (structures)
Computer simulation
Electron micrographs
Generators
Mathematical models
Muscles
Simulation
title Simulation of Biological Systems: Contraction of Skeletal Muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Biological%20Systems:%20Contraction%20of%20Skeletal%20Muscle&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Noble,%20David%20F.&rft.date=1976-06&rft.volume=26&rft.issue=6&rft.spage=165&rft.epage=168&rft.pages=165-168&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/003754977602600604&rft_dat=%3Cproquest_cross%3E1283675049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283675049&rft_id=info:pmid/&rft_sage_id=10.1177_003754977602600604&rfr_iscdi=true