Simulation of Biological Systems: Contraction of Skeletal Muscle
The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an es...
Gespeichert in:
Veröffentlicht in: | Simulation (San Diego, Calif.) Calif.), 1976-06, Vol.26 (6), p.165-168 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 6 |
container_start_page | 165 |
container_title | Simulation (San Diego, Calif.) |
container_volume | 26 |
creator | Noble, David F. |
description | The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes. |
doi_str_mv | 10.1177/003754977602600604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283675049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_003754977602600604</sage_id><sourcerecordid>1283675049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQp_AGmjCyh59ixayag4ksqYgjM1sW1qxQnLnYy9N-TqjAhMZ10et6T7iXkksI1pVLOAJgsuZJSQCEABPAjMqGS05xRxo7JZA_yvTglZyltAGhJpZiQ26ppB499E7osuOy-CT6sG4M-q3apt226yRah6yOaX1J9Wm_7EbwOyXh7Tk4c-mQvfuaUfDw-vC-e8-Xb08vibpmbQqg-l5zDCmrhhHBGOIYWpJSlqgGZKgHpSkleM2COz2vkNTKGteK0mK-EUeN-Sq4Od7cxfA029bptkrHeY2fDkPQomZAlcDXS4kBNDClF6_Q2Ni3Gnaag93Xpv3WNodkhlHBt9SYMsRvf-S_xDaOvaSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283675049</pqid></control><display><type>article</type><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><source>Access via SAGE</source><creator>Noble, David F.</creator><creatorcontrib>Noble, David F.</creatorcontrib><description>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/003754977602600604</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Biological ; Bridges (structures) ; Computer simulation ; Electron micrographs ; Generators ; Mathematical models ; Muscles ; Simulation</subject><ispartof>Simulation (San Diego, Calif.), 1976-06, Vol.26 (6), p.165-168</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/003754977602600604$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/003754977602600604$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Noble, David F.</creatorcontrib><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><title>Simulation (San Diego, Calif.)</title><description>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</description><subject>Biological</subject><subject>Bridges (structures)</subject><subject>Computer simulation</subject><subject>Electron micrographs</subject><subject>Generators</subject><subject>Mathematical models</subject><subject>Muscles</subject><subject>Simulation</subject><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQp_AGmjCyh59ixayag4ksqYgjM1sW1qxQnLnYy9N-TqjAhMZ10et6T7iXkksI1pVLOAJgsuZJSQCEABPAjMqGS05xRxo7JZA_yvTglZyltAGhJpZiQ26ppB499E7osuOy-CT6sG4M-q3apt226yRah6yOaX1J9Wm_7EbwOyXh7Tk4c-mQvfuaUfDw-vC-e8-Xb08vibpmbQqg-l5zDCmrhhHBGOIYWpJSlqgGZKgHpSkleM2COz2vkNTKGteK0mK-EUeN-Sq4Od7cxfA029bptkrHeY2fDkPQomZAlcDXS4kBNDClF6_Q2Ni3Gnaag93Xpv3WNodkhlHBt9SYMsRvf-S_xDaOvaSk</recordid><startdate>197606</startdate><enddate>197606</enddate><creator>Noble, David F.</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197606</creationdate><title>Simulation of Biological Systems: Contraction of Skeletal Muscle</title><author>Noble, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-7440d0b6f66fc6f3ae077759b0a3950a1d974b303f48ba4ba33ab94128d6c9303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Biological</topic><topic>Bridges (structures)</topic><topic>Computer simulation</topic><topic>Electron micrographs</topic><topic>Generators</topic><topic>Mathematical models</topic><topic>Muscles</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noble, David F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noble, David F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Biological Systems: Contraction of Skeletal Muscle</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>1976-06</date><risdate>1976</risdate><volume>26</volume><issue>6</issue><spage>165</spage><epage>168</epage><pages>165-168</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>The simulations to be discussed here assume that force is developed at independent tension generators, and they identify those tension generators with the cross bridges seen in electron micrographs. These simulations attempt to de duce how the cross bridges behave under various circum stances, an essential preparatory step for discovering the actual force-producing phenomena. The mechanical proper ties of each individual cross bridge need not mirror those of the whole muscle. The number of cross bridges partici pating in tension development can vary, and some may be impeding contraction while others aid it. Therefore, one cannot easily predict whether cross bridges with any par ticular kind of behavior will produce behavior characteristic of whole muscle. Such predictions are possible with models and simulation. This review describes two specific cross bridge models, representing two general classes of models. It shows how the predictions of simulations led to a specific experiment whose outcome favored only one of these classes.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/003754977602600604</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-5497 |
ispartof | Simulation (San Diego, Calif.), 1976-06, Vol.26 (6), p.165-168 |
issn | 0037-5497 1741-3133 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283675049 |
source | Access via SAGE |
subjects | Biological Bridges (structures) Computer simulation Electron micrographs Generators Mathematical models Muscles Simulation |
title | Simulation of Biological Systems: Contraction of Skeletal Muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Biological%20Systems:%20Contraction%20of%20Skeletal%20Muscle&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Noble,%20David%20F.&rft.date=1976-06&rft.volume=26&rft.issue=6&rft.spage=165&rft.epage=168&rft.pages=165-168&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/003754977602600604&rft_dat=%3Cproquest_cross%3E1283675049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283675049&rft_id=info:pmid/&rft_sage_id=10.1177_003754977602600604&rfr_iscdi=true |